Type 3256 Valve · ANSI version

In combination with an actuator, e.g. a Type 3271 or Type 3277 Pneumatic Actuator

Type 3256 Valve with Type 3271 Actuator
Note on these mounting and operating instructions

These mounting and operating instructions assist you in mounting and operating the device safely. The instructions are binding for handling SAMSON devices. The images shown in these instructions are for illustration purposes only. The actual product may vary.

→ For the safe and proper use of these instructions, read them carefully and keep them for later reference.

→ If you have any questions about these instructions, contact SAMSON’s After-sales Service (aftersalesservice@samsongroup.com).

Documents relating to the device, such as the mounting and operating instructions, are available on our website at www.samsongroup.com > Service & Support > Downloads > Documentation.

Definition of signal words

⚠️ **DANGER**
Hazardous situations which, if not avoided, will result in death or serious injury

⚠️ **WARNING**
Hazardous situations which, if not avoided, could result in death or serious injury

⚠️ **NOTICE**
Property damage message or malfunction

ℹ️ **Note**
Additional information

☀️ **Tip**
Recommended action
Contents

1 Safety instructions and measures ... 1-1
1.1 Notes on possible severe personal injury 1-4
1.2 Notes on possible personal injury .. 1-5
1.3 Notes on possible property damage 1-7
1.4 Warnings on the device ... 1-8

2 Markings on the device .. 2-1
2.1 Valve nameplate ... 2-1
2.2 Actuator nameplate .. 2-2
2.3 Material numbers ... 2-2
2.4 Label when an adjustable packing is installed 2-2

3 Design and principle of operation ... 3-1
3.1 Fail-safe position ... 3-1
3.2 Versions ... 3-3
3.3 Additional fittings .. 3-3
3.4 Accessories .. 3-4
3.5 Technical data .. 3-4

4 Shipment and on-site transport .. 4-1
4.1 Accepting the delivered goods ... 4-1
4.2 Removing the packaging from the valve 4-1
4.3 Transporting and lifting the valve 4-1
4.3.1 Transporting the valve .. 4-2
4.3.2 Lifting the valve .. 4-3
4.4 Storing the valve .. 4-3

5 Installation ... 5-1
5.1 Installation conditions .. 5-1
5.2 Preparation for installation .. 5-3
5.3 Installing the device ... 5-3
5.3.1 Mounting the external anti-rotation fixture 5-4
5.3.2 Mounting the actuator onto the valve 5-13
5.3.3 Installing the valve into the pipeline 5-14
5.4 Testing the installed valve .. 5-14
5.4.1 Leak test .. 5-15
5.4.2 Travel motion ... 5-16
5.4.3 Fail-safe position .. 5-16
5.4.4 Pressure test ... 5-16
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Start-up</td>
<td>6-1</td>
</tr>
<tr>
<td>7 Operation</td>
<td>7-1</td>
</tr>
<tr>
<td>7.1 Normal operation</td>
<td>7-2</td>
</tr>
<tr>
<td>7.2 Manual operation</td>
<td>7-2</td>
</tr>
<tr>
<td>8 Malfunctions</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1 Troubleshooting</td>
<td>8-1</td>
</tr>
<tr>
<td>8.2 Emergency action</td>
<td>8-2</td>
</tr>
<tr>
<td>9 Servicing</td>
<td>9-1</td>
</tr>
<tr>
<td>9.1 Periodic testing</td>
<td>9-3</td>
</tr>
<tr>
<td>9.2 Preparing the valve for service work</td>
<td>9-5</td>
</tr>
<tr>
<td>9.3 Mounting the valve after service work</td>
<td>9-5</td>
</tr>
<tr>
<td>9.4 Service work</td>
<td>9-5</td>
</tr>
<tr>
<td>9.4.1 Replacing the gasket</td>
<td>9-5</td>
</tr>
<tr>
<td>9.4.2 Replacing the packing</td>
<td>9-6</td>
</tr>
<tr>
<td>9.4.3 Replacing the seat and plug</td>
<td>9-12</td>
</tr>
<tr>
<td>9.5 Ordering spare parts and operating supplies</td>
<td>9-14</td>
</tr>
<tr>
<td>10 Decommissioning</td>
<td>10-1</td>
</tr>
<tr>
<td>11 Removal</td>
<td>11-1</td>
</tr>
<tr>
<td>11.1 Removing the valve from the pipeline</td>
<td>11-2</td>
</tr>
<tr>
<td>11.2 Removing the actuator from the valve</td>
<td>11-2</td>
</tr>
<tr>
<td>12 Repairs</td>
<td>12-1</td>
</tr>
<tr>
<td>12.1 Returning devices to SAMSON</td>
<td>12-1</td>
</tr>
<tr>
<td>13 Disposal</td>
<td>13-1</td>
</tr>
<tr>
<td>14 Certificates</td>
<td>14-1</td>
</tr>
<tr>
<td>15 Annex</td>
<td>15-1</td>
</tr>
<tr>
<td>15.1 Tightening torques, lubricants and tools</td>
<td>15-1</td>
</tr>
<tr>
<td>15.2 Spare parts</td>
<td>15-1</td>
</tr>
<tr>
<td>15.3 After-sales service</td>
<td>15-3</td>
</tr>
</tbody>
</table>
1 Safety instructions and measures

Intended use
The SAMSON Type 3256 Angle Valve in combination with an actuator (e.g. Type 3271 or Type 3277 Pneumatic Actuator) is designed to regulate the flow rate, pressure or temperature of liquids, gases or vapors. The valve with its actuator is designed to operate under exactly defined conditions (e.g. operating pressure, process medium, temperature). Therefore, operators must ensure that the control valve is only used in operating conditions that meet the specifications used for sizing the valve at the ordering stage. In case operators intend to use the control valve in other applications or conditions than specified, contact SAMSON. SAMSON does not assume any liability for damage resulting from the failure to use the device for its intended purpose or for damage caused by external forces or any other external factors.

⇒ Refer to the technical data and nameplate for limits and fields of application as well as possible uses.

Reasonably foreseeable misuse
The control valve is not suitable for the following applications:
- Use outside the limits defined during sizing and by the technical data
- Use outside the limits defined by the valve accessories connected to the valve

Furthermore, the following activities do not comply with the intended use:
- Use of non-original spare parts
- Performing service and repair work not described in these instructions

Qualifications of operating personnel
The control valve must be mounted, started up, serviced and repaired by fully trained and qualified personnel only; the accepted industry codes and practices must be observed. According to these mounting and operating instructions, trained personnel refers to individuals who are able to judge the work they are assigned to and recognize possible hazards due to their specialized training, their knowledge and experience as well as their knowledge of the applicable standards.
Safety instructions and measures

Personal protective equipment

We recommend checking the hazards posed by the process medium being used (e.g. GESTIS (CLP) hazardous substances database). Depending on the process medium and/or the activity, the protective equipment required includes:

- Protective clothing, gloves, eye protection and respiratory protection in applications with hot, cold and/or corrosive media
- Wear hearing protection when working near the valve
- Hard hat
- Safety harness when working at height
- Safety footwear, ESD (electrostatic discharge) footwear, if necessary

➤ Check with the plant operator for details on further protective equipment.

Revisions and other modifications

Revisions, conversions or other modifications of the product are not authorized by SAMSON. They are performed at the user’s own risk and may lead to safety hazards, for example. Furthermore, the product may no longer meet the requirements for its intended use.

Safety features

The fail-safe position of the control valve upon air supply or control signal failure depends on the actuator used (see associated actuator documentation). When the valve is combined with a SAMSON Type 3271 or Type 3277 Pneumatic Actuator, the valve moves to a certain fail-safe position (see the ‘Design and principle of operation’ section) upon supply air or control signal failure. The fail-safe action of the actuator is the same as its direction of action and is specified on the nameplate of SAMSON actuators.

Warning against residual hazards

To avoid personal injury or property damage, plant operators and operating personnel must prevent hazards that could be caused in the control valve by the process medium, the operating pressure, the signal pressure or by moving parts by taking appropriate precautions. Plant operators and operating personnel must observe all hazard statements, warning and caution notes in these mounting and operating instructions.

Hazards resulting from the special working conditions at the installation site of the valve must be identified in a risk assessment and prevented through the corresponding safety instructions drawn up by the operator.

➤ Observe safety measures for handling the device as well as fire prevention and explosion protection measures.
Responsibilities of the operator

The operator is responsible for proper operation and compliance with the safety regulations. Operators are obliged to provide these mounting and operating instructions as well as the referenced documents to the operating personnel and to instruct them in proper operation. Furthermore, the operator must ensure that operating personnel or third parties are not exposed to any danger.

The operator is additionally responsible for ensuring that the limits for the product defined in the technical data are observed. This also applies to the start-up and shutdown procedures. Start-up and shutdown procedures fall within the scope of the operator’s duties and, as such, are not part of these mounting and operating instructions. SAMSON is unable to make any statements about these procedures since the operative details (e.g. differential pressures and temperatures) vary in each individual case and are only known to the operator.

Qualifications of operating personnel

Operating personnel must read and understand these mounting and operating instructions as well as the referenced documents and observe the specified hazard statements, warnings and caution notes. Furthermore, the operating personnel must be familiar with the applicable health, safety and accident prevention regulations and comply with them.

Referenced standards and regulations

The control valves comply with the requirements of the European Pressure Equipment Directive 2014/68/EU and the Machinery Directive 2006/42/EC. Valves with a CE marking have a declaration of conformity which includes information about the applied conformity assessment procedure. The 'Certificates' section contains this declaration of conformity.

Non-electric valve versions whose bodies are not lined with an insulating material coating do not have their own potential ignition source according to the risk assessment stipulated in EN 13463-1: 2009, section 5.2, even in the rare incident of an operating fault. Therefore, such valve versions do not fall within the scope of Directive 2014/34/EU.

For connection to the equipotential bonding system, observe the requirements specified in section 6.4 of EN 60079-14 (VDE 0165-1).
Safety instructions and measures

Referenced documentation

The following documents apply in addition to these mounting and operating instructions:

− Mounting and operating instructions for the mounted actuator, e.g. ▶ EB 8310-X for Type 3271 or Type 3277 Pneumatic Actuator
− Mounting and operating instructions for mounted valve accessories (positioner, solenoid valve etc.)
− ▶ AB 0100 for tools and tightening torques
− Manual ▶ H 02: Appropriate Machinery Components for SAMSON Pneumatic Control Valves with a Declaration of Conformity of Final Machinery

1.1 Notes on possible severe personal injury

⚠️ DANGER

Risk of bursting in pressure equipment.

Valves and pipelines are pressure equipment. Impermissible pressure or improper opening can lead to valve components bursting.

➔ Observe the maximum permissible pressure for valve and plant.
➔ Before starting any work on the control valve, depressurize all plant sections affected as well as the valve.
➔ Drain the process medium from all the plant sections concerned as well as the valve.
1.2 Notes on possible personal injury

WARNING

Risk of burn injuries due to hot or cold components and pipelines.
Depending on the process medium, valve components and pipelines may get very hot or cold and cause burn injuries.

- Allow components and pipelines to cool down or warm up to the ambient temperature.
- Wear protective clothing and safety gloves.

Risk of hearing loss or deafness due to loud noise.
The noise emissions depend on the valve version, plant facilities and process medium.

- Wear hearing protection when working near the valve.

Risk of personal injury due to exhaust air being vented.
While the valve is operating, the actuator, for example, may vent during closed-loop operation or when the valve opens or closes.

- Install the control valve in such a way that vent holes are not located at eye level and the actuator does not vent at eye level in the work position.
- Use suitable silencers and vent plugs.
- Wear eye protection when working in close proximity to the control valve.

Crush hazard arising from moving parts.
The control valve contains moving parts (actuator and plug stem), which can injure hands or fingers if inserted into the valve.

- Do not insert hands or finger into the yoke while the air supply is connected to the actuator.
- Before working on the control valve, disconnect and lock the pneumatic air supply as well as the control signal.
- Do not impede the movement of the actuator and plug stem by inserting objects into the yoke.
- Before unblocking the actuator and plug stem after they have become blocked (e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See associated actuator documentation.
WARNING

Risk of personal injury due to preloaded springs.

Valves in combination with pneumatic actuators with preloaded springs are under tension. These control valves with SAMSON pneumatic actuators can be identified by the long bolts protruding from the bottom of the actuator.

⇒ Before starting any work on the actuator, relieve the compression from the preloaded springs (see associated actuator documentation).

Risk of personal injury due to residual process medium in the valve.

While working on the valve, residual medium can flow out of the valve and, depending on its properties, cause personal injury, e.g. (chemical) burns.

⇒ If possible, drain the process medium from all the plant sections affected and the valve.

⇒ Wear protective clothing, safety gloves, respiratory protection and eye protection.

Risk of personal injury through incorrect operation, use or installation as a result of information on the valve being illegible.

Over time, markings, labels and nameplates on the valve may become covered with dirt or become illegible in some other way. As a result, hazards may go unnoticed and the necessary instructions not followed. There is a risk of personal injury.

⇒ Keep all relevant markings and inscriptions on the device in a constantly legible state.

⇒ Immediately renew damaged, missing or incorrect nameplates or labels.
1.3 Notes on possible property damage

NOTICE

Risk of valve damage due to contamination (e.g. solid particles) in the pipeline.
The plant operator is responsible for cleaning the pipelines in the plant.
→ Flush the pipelines before start-up.

Risk of valve damage due to unsuitable medium properties.
The valve is designed for a process medium with defined properties.
→ Only use the process medium specified for sizing.

Risk of leakage and valve damage due to excessively high or low tightening torques.
Observe the specified torques when tightening control valve components. Excessive tightening torques lead to parts wearing out more quickly. Parts that are too loose may cause leakage.
→ Observe the specified tightening torques (▶ AB 0100).

Risk of valve damage due to the use of unsuitable tools.
Certain tools are required to work on the valve.
→ Only use tools approved by SAMSON (▶ AB 0100).

Risk of valve damage due to the use of unsuitable lubricants.
The lubricants to be used depend on the valve material. Unsuitable lubricants may corrode and damage surfaces.
→ Only use lubricants approved by SAMSON (▶ AB 0100).

Risk of the process medium being contaminated through the use of unsuitable lubricants and/or contaminated tools and components.
→ If necessary, keep the valve and the tools used free from solvents and grease.
→ Make sure that only suitable lubricants are used.
1.4 Warnings on the device

<table>
<thead>
<tr>
<th>Warning</th>
<th>Meaning of the warning</th>
<th>Location on the device</th>
</tr>
</thead>
</table>
| ![Warning symbol](image) | Warning against moving parts
There is a risk of injury to hands or fingers through the stroking movement of the actuator and plug stem if they are inserted into the yoke while the air supply is connected to the actuator. | ![Diagram of the device] |
2 Markings on the device

2.1 Valve nameplate

Fig. 2-1: Inscriptions on the valve nameplate

<table>
<thead>
<tr>
<th>Item</th>
<th>Inscription meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data Matrix code</td>
</tr>
<tr>
<td>2</td>
<td>Type designation</td>
</tr>
<tr>
<td>3</td>
<td>Material</td>
</tr>
<tr>
<td>4</td>
<td>Month and year of manufacture</td>
</tr>
<tr>
<td>5</td>
<td>Valve size:</td>
</tr>
<tr>
<td></td>
<td>DIN: DN · ANSI: NPS · JIS: DN</td>
</tr>
<tr>
<td>6</td>
<td>Pressure rating:</td>
</tr>
<tr>
<td></td>
<td>DIN: PN · ANSI: CL · JIS: K</td>
</tr>
<tr>
<td>7</td>
<td>Order number/item</td>
</tr>
<tr>
<td>8</td>
<td>Flow coefficient:</td>
</tr>
<tr>
<td></td>
<td>DIN: KVS · ANSI: CV</td>
</tr>
<tr>
<td>9</td>
<td>Characteristic:</td>
</tr>
<tr>
<td></td>
<td>%: equal percentage · LIN: linear</td>
</tr>
<tr>
<td></td>
<td>mod-lin: modified linear</td>
</tr>
<tr>
<td></td>
<td>NO/NC: on/off service</td>
</tr>
<tr>
<td>10</td>
<td>Seat-plug seal:</td>
</tr>
<tr>
<td></td>
<td>ME: metal · HA: carbide metal · ST: metal base material with Stellite® facing</td>
</tr>
<tr>
<td></td>
<td>KE: ceramic · PT: PTFE soft seal · PK: PEEK soft seal</td>
</tr>
<tr>
<td>11</td>
<td>Seat code (trim material): on request</td>
</tr>
<tr>
<td>12</td>
<td>Pressure balancing:</td>
</tr>
<tr>
<td></td>
<td>DIN: D · ANSI/JIS: B</td>
</tr>
<tr>
<td></td>
<td>Version: M: mixing valve · V: flow-diverting valve</td>
</tr>
<tr>
<td>13</td>
<td>PSA version:</td>
</tr>
<tr>
<td></td>
<td>PSA</td>
</tr>
<tr>
<td>14</td>
<td>Cage/seat style:</td>
</tr>
<tr>
<td></td>
<td>CC: clamped cage, clamped seat</td>
</tr>
<tr>
<td></td>
<td>SF: suspended cage, flanged seat</td>
</tr>
<tr>
<td>15</td>
<td>Noise reduction:</td>
</tr>
<tr>
<td></td>
<td>1: flow divider (ST) 2: ST 3: ST 3</td>
</tr>
<tr>
<td></td>
<td>1/PSA: ST 1 standard and integrated in seat for PSA valve</td>
</tr>
<tr>
<td></td>
<td>AC-1/AC-2/AC-3/AC-5: AC trim, versions 1 to 5</td>
</tr>
<tr>
<td></td>
<td>LK: perforated plug · LK1/LK2/LK3: perforated plug with flow divider ST 1 to ST 3</td>
</tr>
<tr>
<td></td>
<td>MHC1: multi-hole cage</td>
</tr>
<tr>
<td></td>
<td>CC1: Combi Cage · ZT1: Zero Travel</td>
</tr>
<tr>
<td>16</td>
<td>Country of origin</td>
</tr>
<tr>
<td>17</td>
<td>ID of the notified body</td>
</tr>
<tr>
<td></td>
<td>PED: Pressure Equipment Directive</td>
</tr>
<tr>
<td></td>
<td>G1/G2: gases and vapors</td>
</tr>
<tr>
<td></td>
<td>Fluid group 1 = hazardous</td>
</tr>
<tr>
<td></td>
<td>Fluid group 2 = other</td>
</tr>
<tr>
<td></td>
<td>L1: liquids</td>
</tr>
<tr>
<td></td>
<td>Fluid group 1 = hazardous</td>
</tr>
<tr>
<td></td>
<td>Fluid group 2 = other</td>
</tr>
<tr>
<td></td>
<td>I/II/III: Category 1 to 3</td>
</tr>
<tr>
<td>18</td>
<td>CE marking</td>
</tr>
<tr>
<td>19</td>
<td>PED: Pressure Equipment Directive</td>
</tr>
<tr>
<td></td>
<td>G1/G2: gases and vapors</td>
</tr>
<tr>
<td></td>
<td>Fluid group 1 = hazardous</td>
</tr>
<tr>
<td></td>
<td>Fluid group 2 = other</td>
</tr>
<tr>
<td></td>
<td>I/II/III: Category 1 to 3</td>
</tr>
<tr>
<td>20</td>
<td>Serial number</td>
</tr>
<tr>
<td>21</td>
<td>NE 53 (NAMUR Recommendation)</td>
</tr>
</tbody>
</table>

Note

Fig. 2-1 and the inscription table list all possible characteristics and options that may appear on a valve nameplate. Only the inscriptions relevant to the ordered Type 3256 Valve actually appear on the nameplate.
Markings on the device

The nameplate (80) is affixed to the yoke of the valve (see Fig. 2-2).

Fig. 2-2: Location of the nameplate

2.2 Actuator nameplate

See associated actuator documentation.

2.3 Material numbers

The seat and plug of the valves have an item number written on them. You can contact us stating this item number to find out which material is used. Additionally, a seat code is used to identify the trim material. This seat code is specified on the nameplate.

2.4 Label when an adjustable packing is installed

An instructional label is affixed to the valve when an adjustable packing is installed (see Fig. 2-3).

ATTENTION!

Adjustable packing

Stem packing is NOT tightened down. Adjust carefully as required during start-up!

xxxx-xxxx

Fig. 2-3: Label when an adjustable packing is installed
3 Design and principle of operation

The Type 3256 Angle Valve is preferably combined with a SAMSON Type 3271 or Type 3277 Pneumatic Actuator (see Fig. 3-1). It can also be combined with other actuators.

The seat (4) and plug with plug stem (5) are installed in the body (1). The plug stem is connected to the actuator stem (A7) by the stem connector clamps (A26) and is sealed by a spring-loaded V-ring packing (15). Alternatively, an adjustable high-temperature packing can be used.

The springs in the pneumatic actuator are located either above or below the diaphragm (A4) depending on the selected fail-safe action. A change in the signal pressure acting on the diaphragm causes the plug to move. The actuator size is determined by the diaphragm area.

The medium flows through the valve in the direction indicated by the arrow. A rise in signal pressure causes the force acting on the diaphragm in the actuator to increase. The springs are compressed. Depending on the selected direction of action, the actuator stem retracts or extends. As a result, the plug position in the seat changes and determines the flow rate through the valve.

The direction of flow is different for the version with a ceramic anti-wear sleeve: the medium flows through the valve in the flow-to-close direction.

3.1 Fail-safe position

The fail-safe position of the control valve upon air supply or control signal failure depends on the actuator used (see associated actuator documentation).

Depending on how the compression springs are arranged in the SAMSON Type 3271 and Type 3277 Pneumatic Actuator, the valve has one of two different fail-safe positions:

Actuator stem extends (FA)

When the signal pressure is reduced or the air supply fails, the springs move the actuator stem downward and close the valve. The valve opens when the signal pressure is increased enough to overcome the force exerted by the springs.

Actuator stem retracts (FE)

When the signal pressure is reduced or the air supply fails, the springs move the actuator stem upwards and open the valve. The valve closes when the signal pressure is increased enough to overcome the force exerted by the springs.

The actuator's direction of action can be reversed, if required. Refer to the mounting and operating instructions of the pneumatic actuator:

EB 8310-X for Type 3271 and Type 3277
Fig. 3-1: Type 3256 Angle Valve with Type 3271 Pneumatic Actuator
3.2 Versions

With insulating section/bellows seal
The modular design allows an insulating section or bellows seal to be fitted to the standard valve version.

Trims
Flow dividers (燋 T 8081) can be used to reduce the noise emission.
AC trims (燋 T 8082 and T 8083) can be used for low-noise pressure letdown of liquids.
Perforated plugs (燋 T 8086) can be used to handle critical medium states (e.g. saturated steam).
Ceramic trim parts (燋 T 8071) can be used when the valve is subject to considerable erosion and abrasion (e.g. through flashing service and in applications involving corrosive media containing solid particles).

Actuators
In these instructions, the preferable combination with a SAMSON Type 3271 or Type 3277 Pneumatic Actuator is described. The pneumatic actuator (with or without handwheel) can be replaced by another pneumatic actuator in a different size, but with the same travel.
however, observe the maximum permissible actuator force.

Note
If the travel range of the actuator is larger than the travel range of the valve, the spring assembly in the actuator must be preloaded so that the travel ranges match. See associated actuator documentation.

The basic pneumatic actuator can be replaced by a pneumatic actuator with additional handwheel or by an electric actuator.

3.3 Additional fittings

Strainers
We recommend installing a SAMSON strainer upstream of the valve. It prevents solid particles in the process medium from damaging the valve.

Bypass and shut-off valves
We recommend installing a shut-off valve both upstream of the strainer and downstream of the valve and installing a bypass line. The bypass ensures that the plant does not need to be shut down for service and repair work on the valve.

Insulation
Control valves can be insulated to reduce heat energy transfer.
Refer to the instructions in the 'Installation' section.
Design and principle of operation

Test connection
Versions with bellows seal fitted with a test connection (G 1/8) at the top flange allow the sealing ability of the bellows to be monitored.
Particularly for liquids and vapors, we recommend installing a suitable leakage indicator (e.g. a contact pressure gauge, an outlet to an open vessel or an inspection glass).

Safety guard
For operating conditions that require increased safety (e.g. in cases where the valve is freely accessible to untrained staff), a safety guard must be installed to rule out a crush hazard arising from moving parts (actuator and plug stem). Plant operators are responsible for deciding whether a guard is to be used. The decision is based on the risk posed by the plant and its operating conditions.

3.4 Accessories
Information Sheet ➤ T 8350

3.5 Technical data
The nameplates on the valve and actuator provide information on the control valve version. See the 'Markings on the device' section.

Note
More information is available in Data Sheet ➤ T 8066.

Noise emissions
SAMSON is unable to make general statements about noise emissions. The noise emissions depend on the valve version, plant facilities and process medium.
Table 3-1: Technical data for Type 3256

<table>
<thead>
<tr>
<th>Material</th>
<th>Cast steel A216 WCC</th>
<th>Cast steel A217 WC6</th>
<th>Cast stainless steel A351 CF8M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve size and pressure rating</td>
<td>NPS ½ to 12 in Class 150 to 2500</td>
<td>NPS 16 to 20 on request</td>
<td></td>
</tr>
<tr>
<td>Type of connection</td>
<td>Flanges</td>
<td>All ANSI versions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welding ends</td>
<td>According to ANSI B16.25</td>
<td></td>
</tr>
<tr>
<td>Seat-plug seal</td>
<td>Metal seal · Soft seal · High-performance metal seal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristic</td>
<td>Equal percentage · Linear · Quick opening (T 8000-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rangeability</td>
<td>50:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance</td>
<td>CE · EAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperature ranges in °F (°C) · Permissible operating pressures acc. to pressure-temperature diagram (see Information Sheet T 8000-2)

| Body without insulating section | 14 to 428 °F (−10 to +220 °C) · Up to 662 °F (up to 350 °C) with high-temperature packing |
| Body with insulating section or bellows seal | −20 to +800 °F (−29 to +425 °C) | −20 to +932 °F (−29 to +500 °C) | −325 to +1022 °F (−196 to +550 °C) |

Valve plug 2)

Standard Metal seal	−325 to +1022 °F (−196 to +550 °C) 2)
Soft seal	−325 to +428 °F (−196 to +220 °C) 2)
Balanced with PTFE ring	−58 to +428 °F (−50 to +220 °C) 3)
Balanced with graphite ring	428 to +1022 °F (220 to 550 °C)

Leakage class according to ANSI/FCI 70-2

Standard Metal seal	Standard: IV · High-performance metal seal: V
Soft seal	VI
Balanced, metal seal	With PTFE (standard): IV · High-performance metal seal: V
	With graphite ring: IV

1) Only in combination with suitable body material
2) Note: The temperature limits are not directly converted temperatures.
3) Lower temperatures on request
Design and principle of operation

Dimensions and weights

Table 3-2 and Table 3-3 provide an overview of the dimensions and weights of the standard version of Type 3256 Valve. The lengths and heights in the dimensional drawing are shown on page 3-7.

Dimensions (in inch and mm) and weights (in lbs and kg)

Table 3-2: Dimensions for Type 3256 Valve

<table>
<thead>
<tr>
<th>Valve</th>
<th>NPS</th>
<th>½</th>
<th>1</th>
<th>1½</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Class 150</td>
<td>150</td>
<td>3.62</td>
<td>3.62</td>
<td>4.37</td>
<td>5.00</td>
<td>5.88</td>
<td>6.94</td>
<td>8.88</td>
<td>10.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 300</td>
<td>150</td>
<td>3.75</td>
<td>3.88</td>
<td>4.62</td>
<td>5.25</td>
<td>6.25</td>
<td>7.25</td>
<td>9.31</td>
<td>11.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 600</td>
<td>150</td>
<td>3.98</td>
<td>4.12</td>
<td>4.94</td>
<td>5.62</td>
<td>6.62</td>
<td>7.75</td>
<td>10.00</td>
<td>12.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 900</td>
<td>150</td>
<td>4.25</td>
<td>5.00</td>
<td>6.00</td>
<td>7.25</td>
<td>7.50</td>
<td>9.00</td>
<td>12.00</td>
<td>14.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 1500</td>
<td>150</td>
<td>4.25</td>
<td>5.00</td>
<td>6.00</td>
<td>7.25</td>
<td>9.25</td>
<td>10.75</td>
<td>13.88</td>
<td>16.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 2500</td>
<td>150</td>
<td>5.19</td>
<td>6.06</td>
<td>7.56</td>
<td>8.88</td>
<td>11.38</td>
<td>13.25</td>
<td>18.00</td>
<td>20.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height H4</td>
<td>Class 150 to 600</td>
<td>5.28</td>
<td>5.08</td>
<td>5.08</td>
<td>6.89</td>
<td>6.30</td>
<td>6.69</td>
<td>9.13</td>
<td>On request</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 900</td>
<td>150</td>
<td>6.89</td>
<td>6.69</td>
<td>6.69</td>
<td>8.70</td>
<td>6.30</td>
<td>6.69</td>
<td>9.13</td>
<td>On request</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 1500 to 2500</td>
<td>6.89</td>
<td>6.69</td>
<td>6.69</td>
<td>8.70</td>
<td>9.53</td>
<td>11.65</td>
<td>14.61</td>
<td>21.54</td>
<td>On request</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design and principle of operation

Valve

<table>
<thead>
<tr>
<th>NPS</th>
<th>DN 15</th>
<th>25</th>
<th>40</th>
<th>50</th>
<th>80</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>418</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>418</td>
<td>418</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>418</td>
<td>418</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td>H8 for actuator</td>
<td>1000 cm²</td>
<td>11.61</td>
<td>11.61</td>
<td>11.61</td>
<td>16.46</td>
<td>16.46</td>
<td>On request</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>295</td>
<td>295</td>
<td>295</td>
<td>418</td>
<td>418</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1400-60 cm²</td>
<td>11.61</td>
<td>11.61</td>
<td>11.61</td>
<td>16.46</td>
<td>16.46</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>295</td>
<td>295</td>
<td>295</td>
<td>418</td>
<td>418</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1400-120 cm²</td>
<td>18.90</td>
<td>18.90</td>
<td>18.90</td>
<td>19.80</td>
<td>19.80</td>
<td>19.80</td>
<td>25.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>503</td>
<td>503</td>
<td>503</td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2800 cm²</td>
<td>18.90</td>
<td>18.90</td>
<td>18.90</td>
<td>19.80</td>
<td>19.80</td>
<td>19.80</td>
<td>25.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>503</td>
<td>503</td>
<td>503</td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 x 2800 cm²</td>
<td>18.90</td>
<td>18.90</td>
<td>18.90</td>
<td>19.80</td>
<td>19.80</td>
<td>19.80</td>
<td>25.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>503</td>
<td>503</td>
<td>503</td>
<td>650</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) H8 = 25.60 inch/650 mm with 250 mm seat bore

Dimensional drawing

![Dimensional drawing](image)

Type 3256
Design and principle of operation

Table 3-3: Weights for Type 3256 Valve

<table>
<thead>
<tr>
<th>Valve</th>
<th>DN</th>
<th>15</th>
<th>25</th>
<th>40</th>
<th>50</th>
<th>80</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Class 150</td>
<td></td>
<td>26</td>
<td>33</td>
<td>49</td>
<td>77</td>
<td>128</td>
<td>165</td>
<td>419</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>15</td>
<td>22</td>
<td>35</td>
<td>58</td>
<td>75</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 300</td>
<td>lbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>On request</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>On request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 600</td>
<td>lbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>On request</td>
<td>128</td>
<td>203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 900</td>
<td>lbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>On request</td>
<td>84</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>57</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 1500 to 2500</td>
<td>lbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kg</td>
<td></td>
</tr>
</tbody>
</table>

Note

Refer to the following data sheets for more dimensions and weights:

- T 8066 for valves with bellows seal, insulating section or heating jacket
- The associated actuator documentation applies to actuators, e.g. for SAMSON pneumatic actuators:
 - T 8310-1 for Type 3271 or Type 3277 Pneumatic Actuators up to 750 cm² actuator area
 - T 8310-2 for Type 3271 Actuator with 1000 cm² actuator area and larger
 - T 8310-3 for Type 3271 Actuator with 1400-60 cm² actuator area
4 Shipment and on-site transport

The work described in this section is only to be performed by personnel appropriately qualified to carry out such tasks.

4.1 Accepting the delivered goods

After receiving the shipment, proceed as follows:

1. Check the scope of delivery. Check that the specifications on the valve nameplate match the specifications in the delivery note. See the 'Markings on the device' section for nameplate details.

2. Check the shipment for transportation damage. Report any damage to SAMSON and the forwarding agent (refer to delivery note).

3. Determine the weight and dimensions of the units to be lifted and transported in order to select the appropriate lifting equipment and lifting accessories. Refer to the transport documents and the 'Technical data' section.

4.2 Removing the packaging from the valve

Observe the following sequence:

- Do not open or remove the packaging until immediately before lifting to install the valve into the pipeline.

- Leave the control valve in its transport container or on the pallet to transport it on site.

- Do not remove the protective caps from the inlet and outlet until immediately before installing the valve into the pipeline. They prevent foreign particles from entering the valve.

- Dispose and recycle the packaging in accordance with the local regulations.

4.3 Transporting and lifting the valve

DANGER

Danger due to suspended loads falling.

- Stay clear of suspended or moving loads.

- Close off and secure the transport paths.

WARNING

Risk of lifting equipment tipping over and risk of damage to lifting accessories due to exceeding the rated lifting capacity.

- Only use approved lifting equipment and accessories whose minimum lifting capacity is higher than the weight of the valve (including actuator and packaging, if applicable).
Shipment and on-site transport

WARNING

Risk of personal injury due to the control valve tipping over.
- Observe the valve’s center of gravity.
- Secure the valve against tipping over or turning.

WARNING

Risk of injury due to incorrect lifting without the use of lifting equipment.
Lifting the control valve without the use of lifting equipment may lead to injuries (back injury in particular) depending on the weight of the control valve.
- Observe the occupational health and safety regulations valid in the country of use.

NOTICE

Risk of valve damage due to incorrectly attached slings.
The lifting eyelet/eyebolt on SAMSON actuators is only intended for mounting and removing the actuator as well as lifting the actuator without valve. Do not use this lashing point to lift the entire control valve assembly.
- When lifting the control valve, make sure that the slings attached to the valve body bear the entire load.
- Do not attach load-bearing slings to the actuator, handwheel or any other parts.
- Observe lifting instructions (see section 4.3.2).

Tip

A swivel hoist can be screwed into SAMSON actuators with a female thread on the top diaphragm case in place of the eyebolt (see associated actuator documentation).
In contrast to the lifting eyelet/eyebolt, the swivel hoist is designed for setting a control valve assembly upright.
The sling between the swivel hoist and rigging equipment (hook, shackle etc.) must not bear any load when lifting a control valve assembly. The sling only protects the control valve from tilting while being lifted.

Tip

Our after-sales service can provide more detailed transport and lifting instructions on request.

4.3.1 Transporting the valve
The control valve can be transported using lifting equipment (e.g. crane or forklift).
- Leave the control valve in its transport container or on the pallet to transport it.
- Observe the transport instructions.

Transport instructions
- Protect the control valve against external influences (e.g. impact).
- Do not damage the corrosion protection (paint, surface coatings). Repair any damage immediately.
– Protect the piping and any mounted valve accessories against damage.
– Protect the control valve against moisture and dirt.
– The permissible transportation temperature of standard control valves is –20 to +65 °C (–4 to +149 °F).

Note
Contact our after-sales service for the transportation temperatures of other valve versions.

4.3.2 Lifting the valve

To install a large valve into the pipeline, use lifting equipment (e.g. crane or forklift) to lift it.

Lifting instructions
– Use a hook with safety latch to secure the slings from slipping off the hook during lifting and transporting.
– Secure slings against slipping.
– Make sure the slings can be removed from the valve once it has been installed into the pipeline.
– Prevent the control valve from tilting or tipping over. Observe the valve's center of gravity.
– Do not leave loads suspended when interrupting work for longer periods of time.
– Make sure that the axis of the plug stem is always vertical.

– Make sure that the additional sling between the lifting eyelet and rigging equipment (hook, shackle etc.) does not bear any load when lifting valves larger than NPS 6. The sling only protects the control valve from tilting while being lifted. Before lifting the control valve, tighten the sling.

Lifting
1. Attach the slings to the valve body and rigging equipment (e.g. hook) of the crane or forklift.
2. Secure the slings attached to the body against slipping using connectors.
3. **NPS 6 and larger:** attach another sling to the lashing point on the actuator and to the rigging equipment.
4. Carefully lift the control valve. Check whether the lifting equipment and accessories can bear the weight.
5. Move the control valve at an even pace to the site of installation.
6. Install the valve into the pipeline (see the 'Installation' section).
7. After installation in the pipeline, check whether the joints to the pipeline hold.
8. Remove connectors and slings.

4.4 Storing the valve

Notice
Risk of valve damage due to improper storage.
– Observe the storage instructions.
– Avoid long storage times.
Contact SAMSON in case of different storage conditions or long storage periods.

★ Note
We recommend regularly checking the control valve and the prevailing storage conditions during long storage periods.

Storage instructions

- Protect the control valve against external influences (e.g. impact).
- Secure the valve in the stored position against slipping or tipping over.
- Do not damage the corrosion protection (paint, surface coatings). Repair any damage immediately.
- Protect the control valve against moisture and dirt. Store it at a relative humidity of less than 75 %. In damp spaces, prevent condensation. If necessary, use a drying agent or heating.
- Make sure that the ambient air is free of acids or other corrosive media.
- The permissible storage temperature of standard control valves is −20 to +65 °C (−4 to +149 °F). Contact our after-sales service for the storage temperatures of other valve versions.
- Do not place any objects on the control valve.

Special storage instructions for elastomers
Elastomer, e.g. actuator diaphragm

- To keep elastomers in shape and to prevent cracking, do not bend them or hang them up.
- We recommend a storage temperature of 15 °C (59 °F) for elastomers.
- Store elastomers away from lubricants, chemicals, solutions and fuels.

☀ Tip
Our after-sales service can provide more detailed storage instructions on request.
5 Installation

The work described in this section is only to be performed by personnel appropriately qualified to carry out such tasks.

5.1 Installation conditions

Work position

The work position for the control valve is the front view looking onto the operating controls (including valve accessories).

Plant operators must ensure that, after installation of the device, the operating personnel can perform all necessary work safely and easily access the device from the work position.

Pipeline routing

The inlet and outlet lengths (see Table 5-1) vary depending on several variables and process conditions and are intended as recommendations. Contact SAMSON if the lengths are significantly shorter than the recommended lengths.

To ensure that the valve functions properly, proceed as follows:

- Observe the inlet and outlet lengths (see Table 5-1). Contact SAMSON if the valve conditions or states of the medium process deviate.

- Install the valve free of stress and with the least amount of vibrations as possible. Read ‘Mounting position’ and ‘Support or suspension’ in this section.

- Install the valve allowing sufficient space to remove the actuator and valve or to perform service work on them.

Mounting position

Generally, we recommend installing the valve with the actuator upright and on top of the valve.

In the following versions, the valve must be installed with the actuator on top:

- Valves in NPS 4 and larger
- Valves with insulating section for low temperatures below –10 °C (14 °F)

- Contact SAMSON if the mounting position is not as specified above.

Support or suspension

The plant engineering company is responsible for selecting and implementing a suitable support or suspension of the installed control valve and the pipeline.

Depending on the valve version and mounting position, the valve, actuator and pipeline must be supported or suspended.

Valves, which are not installed in the pipeline in the upright position with the actuator on top, must be supported or suspended.

Vent plugs

Vent plugs are screwed into the exhaust air ports of pneumatic and electropneumatic devices. They ensure that any exhaust air that forms can be vented to the atmosphere (to avoid excess pressure in the device). Furthermore, the vent plugs allow air intake.
to prevent a vacuum from forming in the device.

Locate the vent plug on the opposite side to the work position of operating personnel.

Valve accessories

During connection of valve accessories, make sure that they are easily accessible and can be operated safely from the work position.

Table 5-1: Inlet and outlet lengths

<table>
<thead>
<tr>
<th>State of process medium</th>
<th>Valve conditions</th>
<th>Inlet length a</th>
<th>Outlet length b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>Outlet</td>
<td>Ma ≤ 0.3</td>
<td>2</td>
</tr>
<tr>
<td>Gas</td>
<td></td>
<td>0.3 ≤ Ma ≤ 0.7</td>
<td>2</td>
</tr>
<tr>
<td>Vapor</td>
<td></td>
<td>Ma ≤ 0.3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3 ≤ Ma ≤ 0.7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Saturated steam (percentage of condensate > 5 %)</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Liquid</td>
<td>Free of cavitation/(w < 10 \text{ m/s})</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cavitation producing noise/(w \leq 3 \text{ m/s})</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cavitation producing noise/3 < (w < 5 \text{ m/s})</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Critical cavitation/(w \leq 3 \text{ m/s})</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Critical cavitation/3 < (w < 5 \text{ m/s})</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Liquid</td>
<td>Liquid, with flashing</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Multi-phase</td>
<td>–</td>
<td>–</td>
<td>10</td>
</tr>
</tbody>
</table>

1) No saturated steam
5.2 Preparation for installation

Before installation, make sure the following conditions are met:

- The valve is clean.
- The valve and all valve accessories (including piping) are not damaged.
- The valve data on the nameplate (type designation, valve size, material, pressure rating and temperature range) match the plant conditions (size and pressure rating of the pipeline, medium temperature etc.). See the 'Markings on the device' section for nameplate details.
- The requested or required additional pipe fittings (see the 'Additional fittings' section) have been installed or prepared as necessary before installing the valve.

Risk of control valve damage due to incorrect insulation.

- Only insulate control valves with insulating section or bellows seal up to the bonnet flange of the valve body for medium temperatures below 0 °C (32 °F) and above 220 °C (428 °F). If the insulating section is insulated, it will not function properly.
- Do not insulate valves mounted to comply with NACE MR0175 requirements and which have nuts and bolts that are not suitable for sour gas environments.

Proceed as follows:

- Lay out the necessary material and tools to have them ready during installation work.
- Flush the pipelines.

Note

The plant operator is responsible for cleaning the pipelines in the plant.

- For steam applications, dry the pipelines. Moisture will damage the inside of the valve.
- Check any mounted pressure gauges to make sure they function properly.
- When the valve and actuator are already assembled, check the tightening torques of the bolted joints (AB 0100). Components may loosen during transport.

5.3 Installing the device

The activities listed below are necessary to install the valve and before it can be started up.

Risk of valve damage due to excessively high or low tightening torques.

Observe the specified torques when tightening control valve components. Excessive tightening torques lead to parts wearing out more quickly. Parts that are too loose may cause leakage.

- Observe the specified tightening torques (AB 0100).
Installation

NOTICE

Risk of valve damage due to the use of unsuitable tools.

➤ Only use tools approved by SAMSON (➤ AB 0100).

5.3.1 Mounting the external anti-rotation fixture

Before mounting the actuator, the external anti-rotation fixture must be mounted onto the plug stem in some cases. The valve must be closed beforehand.

For SAMSON Type 3271 and Type 3277 Actuators with Type 3273 Hand-operated Actuator, observe the mounting and operating instructions of the hand-operated actuator (handwheel) to mount the anti-rotation fixture ➤ EB 8312-X.

a) Standard version for valve sizes NPS 6 and larger

See Fig. 5-1 and Fig. 5-2

1. Insert ball bearings (310) into the recesses in the bonnet.
2. Place the yoke (3) on the bonnet in such a way that the ball bearings fit into the recesses of the yoke.
3. Fasten the yoke (3) using the castellated nut (92).
4. Fasten the hanger (83) and warning label (255), if applicable, to the yoke using the screws (82).
5. Position the travel indicator scale (84) on the hanger (83) with the screws (85) according to Table 5-4.
6. Use a soft-faced hammer or lever press to press the slider disks (309) with their beveled part first (without using any lubricant) into the recesses of the clamps (301) as far as they will go. Remove any excess material.
7. Apply a thin film of lubricant (114) to the screws (303).

NOTICE

Impaired functioning due to incorrectly applied lubricant.

➤ Do not apply any lubricant to the stem (9), plug stem or the threads of the clamps (301).

8. Position the clamps (301) and stem (9) on the plug stem according to Table 5-4 and tighten screws (303) and washers (304) by hand.
9. Mount the actuator. See section 5.3.2.
10. Thread the stem (9) upwards until the head of the stem rests on the extended actuator stem.
11. Retract the actuator stem to relieve the stem (9).
12. Tighten the screws (303) gradually in a crisscross pattern. Observe the tightening torques specified in Table 5-2.
Installation

5.3.1 Mounting the external anti-rotation fixture

Before mounting the actuator, the external anti-rotation fixture must be mounted onto the plug stem in some cases. The valve must be closed beforehand.

For SAMSON Type 3271 and Type 3277 Actuators with Type 3273 Hand-operated Actuator, observe the mounting and operating instructions of the hand-operated actuator (handwheel) to mount the anti-rotation fixture.

a) Standard version for valve sizes NPS 6 and larger

See Fig. 5-1 and Fig. 5-2

1. Insert ball bearings (310) into the recesses in the bonnet.
2. Place the yoke (3) on the bonnet in such a way that the ball bearings fit into the recesses of the yoke.
3. Fasten the yoke (3) using the castellated nut (92).
4. Fasten the hanger (83) and warning label (255), if applicable, to the yoke using the screws (82).

NOTICE

![Diagram of yoke assembly with travel indicator scale in the standard version](#)

<table>
<thead>
<tr>
<th>Screw size</th>
<th>Tightening torque [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12</td>
<td>50</td>
</tr>
<tr>
<td>M16</td>
<td>121</td>
</tr>
</tbody>
</table>

13. Check and ensure the following points:
- There is a nominal gap between 0.5 and 1 mm between the slider disks and their seating surface on the yoke on each side (see detailed view Y in Fig. 5-2).
- The anti-rotation fixture does not get stuck on the yoke and can move freely in the direction of travel.

14. Extend the actuator stem again and mount the stem connector clamps.

Legend

- 3 Yoke
- 82 Screws
- 83 Hanger
- 84 Travel indicator scale
- 85 Screws
- 92 Castellated nut
- 255 Warning label
- 310 Ball bearing

Fig. 5-1: Overview of yoke assembly with travel indicator scale in the standard version
Fig. 5-2: Overview of anti-rotation fixture assembly in the standard version
b) Special version in valve sizes
NPS 2 to 4

See Fig. 5-3 and Fig. 5-4

1. Fasten the travel indicator scale (84) with hanger (83) and warning label (255), if applicable, to the yoke using the screws (82). While fastening it, position the travel indicator scale (84) on the hanger (83) according to Table 5-4.

2. Screw tight the holder (302) using the screws (306) and washers (308). Observe the tightening torques specified in Table 5-3.

3. Fasten the yoke (3) using the castellated nut (92).

4. Use a soft-faced hammer or lever press to press the slider disks (309) (without using any lubricant) into the holes of the clamps (301) as far as they will go. Remove any excess material.

5. Apply a thin film of lubricant (114) to the screws (303).

6. Position the clamps (301) and stem (9) on the plug stem according to Table 5-4 and tighten screws (303) and washers (304) by hand.

7. Mount the actuator. See section 5.3.2.

8. Thread the stem (9) upwards until the head of the stem rests on the extended actuator stem.

9. Retract the actuator stem to relieve the stem (9).

10. Tighten the screws (303) gradually in a crisscross pattern. Observe the tightening torques specified in Table 5-3.

Table 5-3: Tightening torques

<table>
<thead>
<tr>
<th>Item</th>
<th>Screw size</th>
<th>Tightening torque [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>306</td>
<td>M10</td>
<td>30</td>
</tr>
<tr>
<td>303</td>
<td>M8</td>
<td>15</td>
</tr>
</tbody>
</table>

11. Check and ensure the following points:
 - There is a nominal gap between 0.5 and 1 mm between the slider disks and their seating surface on the yoke on each side (see detailed view Y in Fig. 5-4).
 - The anti-rotation fixture does not get stuck on the yoke and can move freely in the direction of travel.

12. Extend the actuator stem again and mount the stem connector clamps.

NOTICE

Impaired functioning due to incorrectly applied lubricant.

Do not apply any lubricant to the stem (9), plug stem or the threads of the clamps (301).
Installation

Legend
3 Yoke
82 Screws
83 Hanger
84 Travel indicator scale
92 Castellated nut
255 Warning label
302 Holder
306 Screws
308 Washers

Fig. 5-3: Overview of yoke assembly with travel indicator scale in the special version
Legend

9 Stem
114 Lubricant Gleitmo 1763 V
301 Clamps
303 Screws
304 Washers
309 Slider disks

Fig. 5-4: Overview of anti-rotation fixture assembly in the special version
Table 5-4: Mounting dimensions for Types 3271 and 3277 Pneumatic Actuators · See Fig. 5-5 for dimensional drawing

<table>
<thead>
<tr>
<th>Actuator</th>
<th>Travel [cm²]</th>
<th>Actuator preloading [%]</th>
<th>Dimension when the valve is closed [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[mm]</td>
<td>[mm]</td>
<td>H<sub>F</sub></td>
</tr>
<tr>
<td>DN 50 to 100/NPS 2 to 4 · Special version</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>15 0 0</td>
<td>111 75</td>
<td></td>
</tr>
<tr>
<td>15 25 3.75</td>
<td>115 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>355 700 750</td>
<td>15 50 15</td>
<td>111 75</td>
<td></td>
</tr>
<tr>
<td>15 75 22.5</td>
<td>118.5 67.5</td>
<td>96 90</td>
<td>34.5 34.5</td>
</tr>
<tr>
<td>30 0 0</td>
<td></td>
<td>103.5 82.5</td>
<td></td>
</tr>
<tr>
<td>30 25 7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 1400-60</td>
<td>15 100 60</td>
<td>136 105</td>
<td></td>
</tr>
<tr>
<td>30 75 45</td>
<td></td>
<td>121 120</td>
<td></td>
</tr>
<tr>
<td>30 75 90</td>
<td></td>
<td>231 195</td>
<td></td>
</tr>
<tr>
<td>2800 30 100 120</td>
<td>30 100 120</td>
<td>231 195</td>
<td></td>
</tr>
<tr>
<td>DN 125 to 150/NPS 6 · Standard version</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355 700 750</td>
<td>15 50 15</td>
<td>263.5 67.5</td>
<td></td>
</tr>
<tr>
<td>15 75 22.5</td>
<td>263.5 67.5</td>
<td>249 90</td>
<td>145 145</td>
</tr>
<tr>
<td>30 0 0</td>
<td></td>
<td>145 145</td>
<td></td>
</tr>
<tr>
<td>30 25 7.5</td>
<td></td>
<td>120 120</td>
<td></td>
</tr>
<tr>
<td>1000 1400-60</td>
<td>15 100 60</td>
<td>226 105</td>
<td></td>
</tr>
<tr>
<td>30 0 0</td>
<td></td>
<td>120 120</td>
<td></td>
</tr>
<tr>
<td>30 75 45</td>
<td></td>
<td>120 120</td>
<td></td>
</tr>
<tr>
<td>30 75 90</td>
<td></td>
<td>226 105</td>
<td></td>
</tr>
<tr>
<td>60 0 0</td>
<td></td>
<td>120 120</td>
<td></td>
</tr>
<tr>
<td>60 25 15</td>
<td></td>
<td>181 150</td>
<td></td>
</tr>
<tr>
<td>192 192</td>
<td></td>
<td>192 192</td>
<td></td>
</tr>
<tr>
<td>87 87</td>
<td></td>
<td>105 105</td>
<td></td>
</tr>
<tr>
<td>58 58</td>
<td></td>
<td>105 105</td>
<td></td>
</tr>
<tr>
<td>1000 1400-60</td>
<td>15 87.5 105</td>
<td>236 180</td>
<td></td>
</tr>
<tr>
<td>30 0 0</td>
<td></td>
<td>191 225</td>
<td></td>
</tr>
<tr>
<td>30 75 90</td>
<td></td>
<td>221 195</td>
<td></td>
</tr>
<tr>
<td>60 0 0</td>
<td></td>
<td>191 225</td>
<td></td>
</tr>
<tr>
<td>60 50 60</td>
<td></td>
<td>191 225</td>
<td></td>
</tr>
<tr>
<td>60 75 90</td>
<td></td>
<td>191 225</td>
<td></td>
</tr>
<tr>
<td>1400-120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2800 5600</td>
<td>30 0 0</td>
<td>191 225</td>
<td></td>
</tr>
<tr>
<td>30 100 120</td>
<td>221 195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 0 0</td>
<td></td>
<td>191 225</td>
<td></td>
</tr>
<tr>
<td>60 75 90</td>
<td></td>
<td>191 225</td>
<td></td>
</tr>
<tr>
<td>2800 5600</td>
<td>30 0 0</td>
<td>191 225</td>
<td></td>
</tr>
<tr>
<td>30 100 120</td>
<td>221 195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 0 0</td>
<td></td>
<td>191 225</td>
<td></td>
</tr>
<tr>
<td>60 75 90</td>
<td></td>
<td>191 225</td>
<td></td>
</tr>
<tr>
<td>Actuator preloading</td>
<td>Dimension when the valve is closed [mm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuator [cm²]</td>
<td>H₁</td>
<td>H₂</td>
<td>H₃</td>
</tr>
<tr>
<td>Trav. [mm]</td>
<td>F₁</td>
<td>G₁</td>
<td>H₁</td>
</tr>
<tr>
<td>355 700 750</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1000 1400-60</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>75</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>1400-120</td>
<td>15</td>
<td>87.5</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>2800 5600</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>75</td>
<td>90</td>
</tr>
</tbody>
</table>

DN 250/NPS 10, seat bore 250 and DN 300 to 500/NPS 12 to 20 · Standard version

<table>
<thead>
<tr>
<th>Actuator preloading</th>
<th>Dimension when the valve is closed [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator [cm²]</td>
<td>H₁</td>
</tr>
<tr>
<td>Trav. [mm]</td>
<td>F₁</td>
</tr>
<tr>
<td>1000 1400-60</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td>1400-120</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2800 5600</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

¹) FA = Actuator stem extends (fail-close)
²) FE = Actuator stem retracts (fail-open)
Fig. 5-5: Dimensional drawing with mounting dimensions for Types 3271 and 3277 Pneumatic Actuators
5.3.2 Mounting the actuator onto the valve

⚠️ WARNING
Risk of personal injury due to preloaded springs.
Actuators with preloaded springs are under tension. They can be identified by the long bolts protruding from the bottom of the actuator.

- Before starting any work on the actuator, relieve the compression from the preloaded springs (see associated actuator documentation).

Depending on the version, SAMSON control valves are either delivered with the actuator already mounted on the valve or the valve and actuator are delivered separately. When delivered separately, the valve and actuator must be assembled together on site.

Versions with V-port plug
To achieve the best flow conditions inside the valve, the V-port plug must always be installed with the port that releases the flow first when the valve opens facing toward the valve outlet. This is the largest of the three V-shaped ports (see Fig. 5-6).

- Before mounting the actuator, determine which V-shaped port is uncovered first when the plug is lifted out of the seat.
- On mounting the actuator, make sure that the V-shaped port uncovered first faces toward the valve outlet:

![2x small V-ports](image)

1x large V-port: First to release the flow when the plug is lifted out of the seat.

![V-port plug](image)

Fig. 5-6: V-port plug

a) Mounting the actuator

- To mount the actuator, proceed as described in the associated actuator documentation.

b) Aligning the travel indicator scale

After mounting the actuator, the travel indicator scale must be aligned. To do so, align '0' on the travel indicator scale with the tip of the stem connector clamp (see Fig. 5-5).

1. Move the valve to the closed position.
2. Loosen the screws on the travel indicator scale.
3. Align the travel indicator scale.
4. Fix the travel indicator scale into place by tightening the screws.
5.3.3 Installing the valve into the pipeline

NOTICE
Premature wear and leakage due to insufficient support or suspension.
» Support or suspend the valve sufficiently at suitable points.

a) Version with flanges

1. Close the shut-off valves in the pipeline at the inlet and outlet of the plant section while the valve is being installed.
2. Prepare the relevant section of the pipeline for installing the valve.
3. Remove the protective caps from the valve ports before installing the valve.
4. Lift the valve using suitable lifting equipment to the site of installation (see the 'Lifting the valve' section). Observe the flow direction through the valve. The arrow on the valve indicates the direction of flow.
5. Make sure that the correct flange gaskets are used.
6. Bolt the pipe to the valve free of stress.
7. Attach a support or suspension on the valve, if necessary.

b) Version with welding ends

1. Proceed as described above under ‘Version with flanges’, steps 1 to 4.
2. Completely retract the actuator stem to protect the plug from sparks during welding. "Stem extends" direction of action: apply a signal pressure to the actuator. "Stem retracts" direction of action: the valve is open without any signal pressure being applied.
3. Weld the valve free of stress into the pipeline.
4. Attach a support or suspension on the valve, if necessary.

5.4 Testing the installed valve

DANGER
Risk of bursting due to incorrect opening of pressurized equipment or components.
Valves and pipelines are pressure equipment that may burst when handled incorrectly. Flying projectile fragments or the release of process medium under pressure can cause serious injury or even death.

Before working on the control valve:
» Depressurize all plant sections affected and the valve (including the actuator). Release any stored energy.
» Drain the process medium from all the plant sections concerned as well as the valve.

WARNING
Risk of personal injury due to pressurized components and process medium being discharged.
» Do not loosen the screw of the test connection while the valve is pressurized.
Installation

WARNING

Risk of hearing loss or deafness due to loud noise.

Noise emission (e.g. cavitation or flashing) may occur during operation caused by the process medium and the operating conditions. Additionally, a loud noise may briefly occur through the sudden venting of the pneumatic actuator or pneumatic valve accessories not fitted with noise-reducing fittings. Both can damage hearing.

⇒ Wear hearing protection when working near the valve.

WARNING

Crush hazard arising from actuator and plug stem moving.

⇒ Do not insert hands or finger into the yoke while the air supply is connected to the actuator.

⇒ Before working on the control valve, disconnect and lock the pneumatic air supply as well as the control signal.

⇒ Do not impede the movement of the actuator and plug stem by inserting objects into the yoke.

⇒ Before unblocking the actuator and plug stem after they have become blocked (e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See associated actuator documentation.

WARNING

Risk of personal injury due to exhaust air being vented.

While the valve is operating, the actuator, for example, may vent during closed-loop operation or when the valve opens or closes.

⇒ Wear eye protection when working in close proximity to the control valve.

WARNING

Risk of personal injury due to preloaded springs.

Actuators with preloaded springs are under tension. They can be identified by the long bolts protruding from the bottom of the actuator.

⇒ Before starting any work on the actuator, relieve the compression from the preloaded springs (see associated actuator documentation).

To test the valve functioning before start-up or putting back the valve into operation, perform the following tests:

5.4.1 Leak test

The plant operator is responsible for performing the leak test and selecting the test method. The leak test must comply with the requirements of the national and international standards that apply at the site of installation.
Installation

Our after-sales service can support you to plan and perform a leak test for your plant.

1. Close the valve.
2. Slowly apply the test medium to the inlet space upstream of the valve. A sudden surge in pressure and resulting high flow velocities can damage the valve.
3. Open the valve.
4. Apply the required test pressure.
5. Check the valve for leakage to the atmosphere.
6. Depressurize the pipeline section and valve.
7. Rework any parts that leak (see information below under ‘Adjusting the packing’) and repeat the leak test.

Adjusting the packing

A label on the flange or yoke indicates whether an adjustable packing is installed (see the 'Markings on the device' section).

Tip

Our after-sales service can support you to plan and perform a pressure test for your plant.

1. Tighten the threaded bushing gradually (by turning it clockwise) until the packing seals the valve.
2. Open and close the valve several times.
3. Check the valve for leakage to the atmosphere.
4. Repeat steps 1 and 2 until the packing completely seals the valve.

5. If the adjustable packing does not seal properly, contact our after-sales service.

5.4.2 Travel motion

The movement of the actuator stem must be linear and smooth.

→ Apply the maximum and minimum control signals to check the end positions of the valve while observing the movement of the actuator stem.

→ Check the travel reading at the travel indicator scale.

5.4.3 Fail-safe position

→ Shut off the signal pressure line.

→ Check whether the valve moves to the fail-safe position (see the 'Design and principle of operation' section).

5.4.4 Pressure test

The plant operator is responsible for performing the pressure test.

Tip

Our after-sales service can support you to plan and perform a pressure test for your plant.
During the pressure test, make sure the following conditions are met:

- Retract the plug stem to open the valve.
- Observe the maximum permissible pressure for both the valve and plant.
6 Start-up

The work described in this section is only to be performed by personnel appropriately qualified to carry out such tasks.

WARNING

Risk of burn injuries due to hot or cold components and pipeline.
Valve components and the pipeline may become very hot or cold. Risk of burn injuries.
- Allow components and pipelines to cool down or warm up to the ambient temperature.
- Wear protective clothing and safety gloves.

WARNING

Risk of personal injury due to pressurized components and process medium being discharged.
- Do not loosen the screw of the test connection while the valve is pressurized.

WARNING

Risk of hearing loss or deafness due to loud noise.
Noise emission (e.g. cavitation or flashing) may occur during operation caused by the process medium and the operating conditions. Additionally, a brief loud noise may occur through the sudden venting of the pneumatic actuator (see 'Fail-safe position') or pneumatic valve accessories not fitted with noise-reducing fittings. Both can damage hearing.
- Wear hearing protection when working near the valve.

WARNING

Crush hazard arising from actuator and plug stem moving.
- Do not insert hands or finger into the yoke while the air supply is connected to the actuator.
- Before working on the control valve, disconnect and lock the pneumatic air supply as well as the control signal.
- Do not impede the movement of the actuator and plug stem by inserting objects into the yoke.
- Before unblocking the actuator and plug stem after they have become blocked (e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See associated actuator documentation.

WARNING

Risk of personal injury due to exhaust air being vented.
While the valve is operating, the actuator, for example, may vent during closed-loop operation or when the valve opens or closes.
- Wear eye protection when working in close proximity to the control valve.
Start-up

Before start-up or putting the valve back into service, make sure the following conditions are met:

- The valve is properly installed into the pipeline (see the 'Installation' section).
- The leak and function tests have been completed successfully (see the 'Testing the installed valve' section).
- The prevailing conditions in the plant section concerned meet the valve sizing requirements (see information under 'Intended use' in the 'Safety instructions and measures' section).

Start-up/putting the valve back into operation

1. Allow the valve to cool down or warm up to reach ambient temperature before start-up when the ambient temperature and process medium temperature differ greatly or the medium properties require such a measure.

2. Slowly open the shut-off valves in the pipeline. Slowly opening these valves prevents a sudden surge in pressure and high flow velocities which can damage the valve.

3. Check the valve to ensure it functions properly.
7 Operation

Immediately after completing start-up or putting the valve back into operation, the valve is ready for use.

⚠️ WARNING
Risk of burn injuries due to hot or cold components and pipeline.
Valve components and the pipeline may become very hot or cold. Risk of burn injuries.
→ Allow components and pipelines to cool down or warm up to the ambient temperature.
→ Wear protective clothing and safety gloves.

⚠️ WARNING
Risk of personal injury due to pressurized components and process medium being discharged.
→ Do not loosen the screw of the test connection while the valve is pressurized.

⚠️ WARNING
Risk of hearing loss or deafness due to loud noise.
Noise emission (e.g. cavitation or flashing) may occur during operation caused by the process medium and the operating conditions. Additionally, a loud noise may briefly occur through the sudden venting of the pneumatic actuator or pneumatic valve accessories not fitted with noise-reducing fittings. Both can damage hearing.

→ Wear hearing protection when working near the valve.

⚠️ WARNING
Crush hazard arising from actuator and plug stem moving.
→ Do not insert hands or finger into the yoke while the air supply is connected to the actuator.
→ Before working on the control valve, disconnect and lock the pneumatic air supply as well as the control signal.
→ Do not impede the movement of the actuator and plug stem by inserting objects into the yoke.
→ Before unblocking the actuator and plug stem after they have become blocked (e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See associated actuator documentation.

⚠️ WARNING
Risk of personal injury due to exhaust air being vented.
While the valve is operating, the actuator, for example, may vent during closed-loop operation or when the valve opens or closes.
→ Wear eye protection when working in close proximity to the control valve.
7.1 Normal operation

The handwheel of valves with actuators fitted with a handwheel must be in the neutral position during normal operation.

7.2 Manual operation

Valves with actuators fitted with a handwheel can be manually closed or opened in case of supply air failure.
8 Malfunctions

Read hazard statements, warnings and caution notes in the 'Safety instructions and measures' section.

8.1 Troubleshooting

<table>
<thead>
<tr>
<th>Malfunction</th>
<th>Possible reasons</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator and plug stem does not move on demand.</td>
<td>Actuator is blocked.</td>
<td>Check attachment. Remove the blockage. WARNING! A blocked actuator or plug stem (e.g. due to seizing up after remaining in the same position for a long time) can suddenly start to move uncontrollably. Injury to hands or fingers is possible if they are inserted into the actuator or valve. Before trying to unblock the actuator or plug stem, disconnect and lock the pneumatic air supply as well as the control signal. Before unblocking the actuator, release any stored energy in the actuator (e.g. spring compression). See associated actuator documentation.</td>
</tr>
<tr>
<td>Diaphragm in the actuator defective</td>
<td>See associated actuator documentation.</td>
<td></td>
</tr>
<tr>
<td>Signal pressure too low</td>
<td>Check the signal pressure.</td>
<td>Check the signal pressure line for leakage.</td>
</tr>
<tr>
<td>Jolting movement of the actuator and plug stem</td>
<td>Version with adjustable packing ¹: packing not tightened correctly</td>
<td>Tighten the packing correctly (see information under 'Adjusting the packing' in the 'Testing the installed valve' section).</td>
</tr>
<tr>
<td>Actuator and plug stem does not stroke through the entire range.</td>
<td>Signal pressure too low</td>
<td>Check the signal pressure. Check the signal pressure line for leakage.</td>
</tr>
<tr>
<td>Travel stop active</td>
<td>See associated actuator documentation.</td>
<td></td>
</tr>
<tr>
<td>Incorrect setting of valve accessories</td>
<td>Check the settings of the valve accessories.</td>
<td></td>
</tr>
<tr>
<td>Increased flow through closed valve (seat leakage)</td>
<td>Dirt or other foreign particles deposited between the seat and plug.</td>
<td>Shut off the section of the pipeline and flush the valve.</td>
</tr>
<tr>
<td>Valve trim, particularly with soft seat, is worn.</td>
<td>Replace seat and plug (see the 'Servicing' section) or contact our after-sales service.</td>
<td></td>
</tr>
</tbody>
</table>
Malfunctions

8.2 Emergency action

The plant operator is responsible for emergency action to be taken in the plant.

In the event of a valve malfunction:

1. Close the shut-off valves upstream and downstream of the control valve to stop the process medium from flowing through the valve.

2. Perform troubleshooting (see section 8.1).

3. Rectify those malfunctions that can be remedied based on the instructions provided here. Contact our after-sales service in all other cases.

Putting the valve back into operation after a malfunction

See the ‘Start-up’ section.

The valve leaks to the atmosphere (fugitive emissions).

<table>
<thead>
<tr>
<th>Malfunction</th>
<th>Possible reasons</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The valve leaks to the atmosphere (fugitive emissions).</td>
<td>Defective packing</td>
<td>Replace packing (see the 'Servicing' section) or contact our after-sales service.</td>
</tr>
<tr>
<td>Version with adjustable packing: packing not tightened correctly</td>
<td>Adjust the packing (see information under 'Adjusting the packing' in the 'Testing the installed valve' section). Contact our after-sales service when it continues to leak.</td>
<td></td>
</tr>
<tr>
<td>Version with bellows seal: the bellows seal is defective.</td>
<td>Contact our after-sales service.</td>
<td></td>
</tr>
<tr>
<td>Flange joint loose or gasket worn out</td>
<td>Check the flange joint. Replace gasket at the flanged joint (see the 'Servicing' section) or contact our after-sales service.</td>
<td></td>
</tr>
</tbody>
</table>

1) See the 'Markings on the device' section.

Contact our after-sales service for malfunctions not listed in the table.
9 Servicing

The work described in this section is only to be performed by personnel appropriately qualified to carry out such tasks.

The following documents are also necessary for servicing the valve:

- Mounting and operating instructions for the mounted actuator, e.g. EB 8310-X for Type 3271 or Type 3277 Pneumatic Actuator
- AB 0100 for tools, tightening torques and lubricant

DANGER

Risk of bursting due to incorrect opening of pressurized equipment or components.

Valves and pipelines are pressure equipment that may burst when handled incorrectly. Flying projectile fragments or the release of process medium under pressure can cause serious injury or even death.

Before working on the control valve:

- Depressurize all plant sections affected and the valve (including the actuator). Release any stored energy.
- Drain the process medium from all the plant sections concerned as well as the valve.

WARNING

Risk of burn injuries due to hot or cold components and pipeline.

Valve components and the pipeline may become very hot or cold. Risk of burn injuries.

- Allow components and pipelines to cool down or warm up to the ambient temperature.
- Wear protective clothing and safety gloves.

WARNING

Risk of personal injury due to pressurized components and process medium being discharged.

- Do not loosen the screw of the test connection while the valve is pressurized.

WARNING

Risk of hearing loss or deafness due to loud noise.

Noise emission (e.g. cavitation or flashing) may occur during operation caused by the process medium and the operating conditions. Additionally, a loud noise may briefly occur through the sudden venting of the pneumatic actuator or pneumatic valve accessories not fitted with noise-reducing fittings. Both can damage hearing.

- Wear hearing protection when working near the valve.

WARNING

Crush hazard arising from actuator and plug stem moving.

- Do not insert hands or finger into the yoke while the air supply is connected to the actuator.
Before working on the control valve, disconnect and lock the pneumatic air supply as well as the control signal.

Do not impede the movement of the actuator and plug stem by inserting objects into the yoke.

Before unblocking the actuator and plug stem after they have become blocked (e.g., due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g., spring compression). See associated actuator documentation.

WARNING

Risk of personal injury due to exhaust air being vented.
While the valve is operating, the actuator, for example, may vent during closed-loop operation or when the valve opens or closes.

Wear eye protection when working in close proximity to the control valve.

WARNING

Risk of personal injury due to preloaded springs.
Actuators with preloaded springs are under tension. They can be identified by the long bolts protruding from the bottom of the actuator.

Before starting any work on the actuator, relieve the compression from the preloaded springs (see associated actuator documentation).

WARNING

Risk of personal injury due to residual process medium in the valve.
While working on the valve, residual medium can flow out of the valve and, depending on its properties, cause personal injury, e.g., (chemical) burns.

Wear protective clothing, safety gloves, respiratory protection and eye protection.

NOTICE

Risk of valve damage due to excessively high or low tightening torques.
Observe the specified torques when tightening control valve components. Excessive tightening torques lead to parts wearing out more quickly. Parts that are too loose may cause leakage.

Observe the specified tightening torques (AB 0100).

NOTICE

Risk of valve damage due to the use of unsuitable tools.

Only use tools approved by SAMSON (AB 0100).

NOTICE

Risk of valve damage due to the use of unsuitable lubricants.

Only use lubricants approved by SAMSON (AB 0100).
9.1 Periodic testing

Depending on the operating conditions, check the valve at certain intervals to prevent a possible failure before it can occur. Operators are responsible for drawing up an inspection and test plan.

Tip

Our after-sales service can support you in drawing up an inspection and test plan for your plant.

We recommend the following inspection and testing which can be performed while the process is running:

<table>
<thead>
<tr>
<th>Inspection and testing</th>
<th>Action to be taken in the event of a negative result:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check the markings, labels and nameplates on the valve for their readability and completeness.</td>
<td>Immediately renew damaged, missing or incorrect nameplates or labels.</td>
</tr>
<tr>
<td>Check the pipe connections and gaskets on the valve and actuator for leakage.</td>
<td>Clean any inscriptions that are covered with dirt and are illegible.</td>
</tr>
<tr>
<td>Check the bolted joint (tightening torque).</td>
<td>Replace the gasket on the flanged joint as described in section 9.4.1.</td>
</tr>
<tr>
<td>Version with adjustable packing 11: tighten the packing (see information under ‘Adjusting the packing’ in the ‘Testing the installed valve’ section). If the packing leaks continuously, replace the packing (see section 9.4.2).</td>
<td>—</td>
</tr>
</tbody>
</table>

Note

The control valve was checked by SAMSON before it left the factory.

- Certain test results certified by SAMSON lose their validity when the valve is opened. Such testing includes seat leakage and leak tests.
- The product warranty becomes void if service or repair work not described in these instructions is performed without prior agreement by SAMSON’s after-sales service.
- Only use original spare parts by SAMSON, which comply with the original specifications.
Servicing

<table>
<thead>
<tr>
<th>Inspection and testing</th>
<th>Action to be taken in the event of a negative result:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check the test connection and bellows seal (if used) for external leakage.</td>
<td>Put the control valve out of operation (see the 'Decommissioning' section). To repair the bellows section, contact our after-sales service (see the 'Repairs' section).</td>
</tr>
<tr>
<td>WARNING! Risk of personal injury due to pressurized components and process medium being discharged. Do not loosen the screw of the test connection while the valve is pressurized.</td>
<td></td>
</tr>
<tr>
<td>Check the valve’s seat leakage.</td>
<td>Shut off the section of the pipeline and flush the valve to remove any dirt and/or deposited foreign particles between the seat and plug.</td>
</tr>
<tr>
<td>Replace the seat and plug (see section 9.4.3)</td>
<td></td>
</tr>
<tr>
<td>Check the valve for external damage (e.g. corrosion).</td>
<td>Remove any damage immediately. If necessary, put the control valve out of operation (see the 'Decommissioning' section).</td>
</tr>
<tr>
<td>Check the valve accessories to ensure they are mounted properly.</td>
<td>Tighten the connections of the valve accessories.</td>
</tr>
<tr>
<td>Check to ensure that the actuator and plug stem move smoothly.</td>
<td>Version with adjustable packing 1): tighten the packing correctly (see information under 'Adjusting the packing' in the 'Testing the installed valve' section).</td>
</tr>
<tr>
<td>Unblock a blocked actuator and plug stem.</td>
<td>WARNING! A blocked actuator or plug stem (e.g. due to seizing up after remaining in the same position for a long time) can suddenly start to move uncontrollably. Injury to hands or fingers is possible if they are inserted into the actuator or valve.</td>
</tr>
<tr>
<td>Before trying to unblock the actuator or plug stem, disconnect and lock the pneumatic air supply as well as the control signal. Before unblocking the actuator, release any stored energy in the actuator (e.g. spring compression). See associated actuator documentation.</td>
<td></td>
</tr>
<tr>
<td>If possible, check the valve’s fail-safe position by briefly interrupting the air supply.</td>
<td>Put the control valve out of operation (see the 'Decommissioning' section). Identify the cause for the malfunction and rectify it (see the 'Troubleshooting' section).</td>
</tr>
</tbody>
</table>

1) See the 'Markings on the device' section
9.2 Preparing the valve for service work

1. Lay out the necessary material and tools to have them ready for the service work.
2. Put the control valve out of operation (see the 'Decommissioning' section).
3. Remove the actuator from the valve. See associated actuator documentation.

To remove an actuator with "stem extends" fail-safe action and/or with preloaded springs, a certain signal pressure must be applied to the actuator (see associated actuator documentation). Afterwards, the signal pressure must be removed and the air supply disconnected again and locked.

We recommend removing the valve from the pipeline before performing any service work (see the 'Removal' section).

The following service work can be performed after preparation is completed:
- Replace the gasket (see section 9.4.1)
- Replace the packing (see section 9.4.2)
- Replace the seat and plug (see section 9.4.3)

9.3 Mounting the valve after service work

1. Mount actuator. See associated actuator documentation.
2. Adjust lower or upper signal bench range. See associated actuator documentation.
3. Put the control valve back into operation (see the 'Start-up' section). Observe the requirements and conditions for start-up or putting the valve back into operation.

9.4 Service work

- Before performing any service work, preparations must be made to the control valve (see section 9.2).
- After all service work is completed, check the control valve before putting it back into operation (see 'Testing the installed valve' in the 'Installation' section).

9.4.1 Replacing the gasket

Risk of control valve damage due to incorrect servicing.

- The gasket can only be replaced when all the following conditions are met:
 - The valve size is ≤NPS 4.
 - The valve does not have a balanced plug.
 - The valve does not have a flow divider.
- To replace the gasket in other valve versions, contact our after-sales service.
a) Standard version

1. Undo the body nuts (14) gradually in a crisscross pattern.
2. Lift the bonnet (2) and plug with plug stem (5) off the body (1).
3. Remove the gasket (17). Carefully clean the sealing faces in the valve body (1) and on the bonnet (2).
4. Insert a new gasket (17) into the body.
5. Place the bonnet (2) onto the body.

 Version with V-port plug: place the bonnet (2) onto the valve body, making sure that the largest V-shaped port of the V-port plug faces toward the valve outlet. See 'Mounting the actuator onto the valve' in the 'Installation' section.
6. Firmly press the plug (5) into the seat (4). Fasten down the bonnet (2) with the body nuts (14). Tighten the nuts gradually in a crisscross pattern. Observe tightening torques.

b) Version with insulating section or bellows seal

1. Undo the body nuts (14) gradually in a crisscross pattern.
2. Lift the insulating section (21) or bellows seal (22) and plug with plug stem (5) off the body (1).
3. Remove the gasket (17). Carefully clean the sealing faces in the valve body (1) and on the insulating section (21) or bellows seal (22).
4. Insert a new gasket (17) into the body.
5. Place the insulating section (21) or bellows seal (22) onto the body.

 Version with V-port plug: place the insulating section (21) or bellows seal (22) onto the valve body, making sure that the largest V-shaped port of the V-port plug faces toward the valve outlet. See 'Mounting the actuator onto the valve' in the 'Installation' section.
6. Firmly press the plug (5) into the seat (4). Fasten down the insulating section (21) or bellows seal (22) with the body nuts (14). Tighten the nuts gradually in a crisscross pattern. Observe tightening torques.

9.4.2 Replacing the packing

NOTICE

Risk of control valve damage due to incorrect servicing.

➤ The packing can only be replaced when all the following conditions are met:
 - The valve size is ≤NPS 4.
 - The valve does not have a balanced plug.
 - The valve does not have a bellows seal.
 - The standard or ADSEAL packing is installed in the valve.

➤ To replace the packing in other valve versions, contact our after-sales service.
Legend for Fig. 9-1 and Fig. 9-2

1 Body 10 Lock nut A7 Actuator stem
2 Bonnet 14 Body nut A8 Ring nut
3 Yoke 15 Packing A10 Spring
4 Seat 17 Body gasket A16 Vent plug
5 Plug (with plug stem) 21 Insulating section A26/27 Stem connector clamps
8 Threaded bushing 84 Travel indicator scale S Signal pressure connection (packing nut)
9 Stem connector nut 92 Castellated nut

A4 Diaphragm

Fig. 9-1: Standard version of Type 3256 Valve with Type 3271 Actuator
a) Standard version

Standard packing (PTFE)

1. Unscrew the castellated nut (92) and lift the yoke (3) off the bonnet (2).
2. Undo the body nuts (14) gradually in a crisscross pattern.
3. Lift the bonnet (2) and plug with plug stem (5) off the body (1).
4. Unthread the stem connector nut (9) and lock nut (10) from the plug stem.
5. Unscrew the threaded bushing (8).
6. Pull the plug with plug stem (5) out of the bonnet (2).
7. Pull the entire packing out of the packing chamber using a suitable tool.
8. Renew damaged parts. Clean the packing chamber thoroughly.
9. Apply a suitable lubricant to all the packing parts and to the plug stem (5).
10. Slide the plug with plug stem (5) into the bonnet (2).
11. Place the bonnet (2) together with the plug stem and plug (5) onto the body.
 Version with V-port plug: place the bonnet (2) onto the valve body, making sure that the largest V-shaped port of the V-port plug faces toward the valve outlet. See 'Mounting the actuator onto the valve' in the 'Installation' section.
12. Carefully slide the packing parts over the plug stem into the packing chamber using a suitable tool. Observe the proper sequence (see Fig. 9-3).
13. Firmly press the plug (5) into the seat (4). Fasten down the bonnet (2) with the body nuts (14). Tighten the nuts gradually in a crisscross pattern. Observe tightening torques.

14. Screw in the threaded bushing (8) and tighten it. Observe tightening torques.

15. Place yoke (3) on the bonnet (2) and fasten tight using the castellated nut (92).

16. Loosely screw the lock nut (10) and stem connector nut (9) onto the plug stem.

ADSEAL packing

1. Proceed as described in 'Standard packing (PTFE)', steps 1 to 11.

2. Carefully slide the packing parts over the plug stem into the packing chamber using a suitable tool. Observe the proper sequence (see Fig. 9-4).

3. Slide the seals (15.2) over the plug stem. Insert the wire of the red spacer ring (15.1) into the groove of the retaining ring. Slide the retaining ring over the plug stem.

4. Insert the red spacer ring (15.1) between the threaded bushing (8) and retaining ring. See Fig. 9-4.

5. Proceed as described in ‘Standard packing (PTFE)’, steps 13 to 16.

b) Version with insulating section

Standard packing (PTFE)

1. Unscrew the castellated nut (92) and lift the yoke (3) off the insulating section (21).

2. Undo the body nuts (14) gradually in a crisscross pattern.

3. Lift the insulating section (21) and plug with plug stem (5) off the body (1).

4. Unthread the stem connector nut (9) and lock nut (10) from the plug stem.

5. Unscrew the threaded bushing (8).

6. Pull the plug with plug stem (5) out of the insulating section (21).

7. Pull the entire packing out of the packing chamber using a suitable tool.

8. Renew the damaged parts and carefully clean the packing chamber.

9. Apply a suitable lubricant to all the packing parts and to the plug stem (5).

10. Slide the plug with plug stem (5) into the insulating section (21).

11. Place the insulating section (21) together with the plug stem and plug (5) onto the body.

Version with V-port plug: place the insulating section (21) onto the valve body, making sure that the largest V-shaped port of the V-port plug faces toward the valve outlet. See 'Mounting the actuator onto the valve' in the 'Installation' section.
12. Carefully slide the packing parts over the plug stem into the packing chamber using a suitable tool. Observe the proper sequence (see Fig. 9-3).

13. Firmly press the plug (5) into the seat (4). Fasten down the insulating section (21) with the body nuts (14). Tighten the nuts gradually in a crisscross pattern. Observe tightening torques.

14. Screw in the threaded bushing (8) and tighten it. Observe tightening torques.

15. Place yoke (3) onto the insulating section (21) and fasten tight using the castellated nut (92).

16. Loosely screw the lock nut (10) and stem connector nut (9) onto the plug stem.

ADSEAL packing

1. Proceed as described in ‘Standard packing (PTFE)’, steps 1 to 11.

2. Carefully slide the packing parts over the plug stem into the packing chamber using a suitable tool. Observe the proper sequence (see Fig. 9-4).

3. Slide the seals (15.2) over the plug stem. Insert the wire of the red spacer ring (15.1) into the groove of the retaining ring. Slide the retaining ring over the plug stem.
4. Insert the red spacer ring (15.1) between the threaded bushing (8) and retaining ring. See Fig. 9-4.

5. Proceed as described in ‘Standard packing (PTFE)’, steps 13 to 16.
9.4.3 Replacing the seat and plug

NOTICE

Risk of control valve damage due to incorrect servicing.

Seat and plug can only be replaced when all the following conditions are met:
- The valve size is ≤NPS 4.
- The valve does not have a balanced plug.
- The valve does not have a bellows seal.
- The valve does not have a flow divider.
- The valve does not have an AC trim.
- The standard or ADSEAL packing is installed in the valve.

To replace seat and plug in other valve versions, contact our after-sales service.

NOTICE

Risk of damage to the facing of the seat and plug due to incorrect servicing.

Always replace both the seat and plug.

Tip

When replacing the seat and plug, we also recommend replacing the packing (see section 9.4.2).

a) Standard version

1. Unscrew the castellated nut (92) and lift the yoke (3) off the bonnet (2).
2. Undo the body nuts (14) gradually in a crisscross pattern.
3. Lift the bonnet (2) and plug with plug stem (5) off the body (1).
4. Replace the gasket (see section 9.4.1)
5. Unthread the stem connector nut (9) and lock nut (10) from the plug stem.
6. Unscrew the threaded bushing (8).
7. Pull the plug with plug stem (5) out of the bonnet (2).
8. Pull the entire packing out of the packing chamber using a suitable tool.
9. Make sure that the guide bushing (7) is not damaged. If necessary, replace the guide bushing using a suitable tool.
10. Unscrew the seat (4) using a suitable tool.
11. Apply a suitable lubricant to the thread and the sealing cone of the new seat.
13. Apply a suitable lubricant to all the packing parts and to the new plug stem (5). We recommend replacing the packing as well. See section 9.4.2.
14. Slide the new plug with plug stem (5) into the bonnet (2).
15. Place the bonnet (2) together with the plug stem and plug (5) onto the body (1).
Version with V-port plug: place the bonnet (2) onto the valve body, making sure that the largest V-shaped port of the V-port plug faces toward the valve outlet. See 'Mounting the actuator onto the valve' in the 'Installation' section.

16. Carefully slide the packing parts over the plug stem into the packing chamber using a suitable tool. Observe the proper sequence (see Fig. 9-3).

17. Firmly press the plug (5) into the seat (4). Fasten down the bonnet (2) with the body nuts (14). Tighten the nuts gradually in a crisscross pattern. Observe tightening torques.

18. Screw in the threaded bushing (8) and tighten it. Observe tightening torques.

19. Place yoke (3) on the bonnet (2) and fasten tight using the castellated nut (92).

20. Loosely screw the lock nut (10) and stem connector nut (9) onto the plug stem.

b) Version with insulating section

1. Unscrew the castellated nut (92) and lift the yoke (3) off the insulating section (21).

2. Undo the body nuts (14) gradually in a crisscross pattern.

3. Lift the insulating section (21) together with the plug stem and plug (5) off the body (1).

4. Replace the gasket (see section 9.4.1)

5. Unthread the stem connector nut (9) and lock nut (10) from the plug stem (5).

6. Unscrew the threaded bushing (8).

7. Pull the plug with plug stem (5) out of the insulating section (21).

8. Pull the entire packing out of the packing chamber using a suitable tool.

9. Make sure that the guide bushing (7) is not damaged. If necessary, replace the guide bushing using a suitable tool.

10. Unscrew the seat (4) using a suitable tool.

11. Apply a suitable lubricant to the thread and the sealing cone of the new seat.

13. Apply a suitable lubricant to all the packing parts and to the new plug stem (5). We recommend replacing the packing as well. See section 9.4.2.

14. Slide the new plug with plug stem (5) into the insulating section (21).

15. Place the insulating section (21) together with the plug stem and plug (5) onto the body (1).

Version with V-port plug: place the insulating section (21) onto the valve body, making sure that the largest V-shaped port of the V-port plug faces toward the valve outlet. See 'Mounting the actuator onto the valve' in the 'Installation' section.

16. Carefully slide the packing parts over the plug stem extension into the packing
chamber using a suitable tool. Observe the proper sequence (see Fig. 9-3).

17. Firmly press the plug (5) into the seat (4). Fasten down the insulating section (21) with the body nuts (14). Tighten the nuts gradually in a crisscross pattern. Observe tightening torques.

18. Screw in the threaded bushing (8) and tighten it. Observe tightening torques.

19. Place yoke (3) onto the insulating section (21) and fasten tight using the castellated nut (92).

20. Loosely screw the lock nut (10) and stem connector nut (9) onto the plug stem.

9.5 Ordering spare parts and operating supplies

Contact your nearest SAMSON subsidiary or SAMSON’s After-sales Service for information on spare parts, lubricants and tools.

Spare parts

See Annex for details on spare parts.

Lubricant

See document ▶ AB 0100 for details on suitable lubricants.

Tools

See document ▶ AB 0100 for details on suitable tools.
10 Decommissioning

The work described in this section is only to be performed by personnel appropriately qualified to carry out such tasks.

DANGER

Risk of bursting due to incorrect opening of pressurized equipment or components.
Valves and pipelines are pressure equipment that may burst when handled incorrectly. Flying projectile fragments or the release of process medium under pressure can cause serious injury or even death.
Before working on the control valve:
- Depressurize all plant sections affected and the valve (including the actuator). Release any stored energy.
- Drain the process medium from all the plant sections concerned as well as the valve.

WARNING

Risk of burn injuries due to hot or cold components and pipeline.
Valve components and the pipeline may become very hot or cold. Risk of burn injuries.
- Allow components and pipelines to cool down or warm up to the ambient temperature.
- Wear protective clothing and safety gloves.

WARNING

Risk of personal injury due to pressurized components and process medium being discharged.
- Do not loosen the screw of the test connection while the valve is pressurized.

WARNING

Risk of hearing loss or deafness due to loud noise.
Noise emission (e.g. cavitation or flashing) may occur during operation caused by the process medium and the operating conditions. Additionally, a loud noise may briefly occur through the sudden venting of the pneumatic actuator or pneumatic valve accessories not fitted with noise-reducing fittings. Both can damage hearing.
- Wear hearing protection when working near the valve.

WARNING

Crush hazard arising from actuator and plug stem moving.
- Do not insert hands or finger into the yoke while the air supply is connected to the actuator.
- Before working on the control valve, disconnect and lock the pneumatic air supply as well as the control signal.
- Do not impede the movement of the actuator and plug stem by inserting objects into the yoke.
- Before unblocking the actuator and plug stem after they have become blocked
Decommissioning

(e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See associated actuator documentation.

3. Disconnect and lock the pneumatic air supply to depressurize the actuator.
4. Release any stored energy.
5. If necessary, allow the pipeline and valve components to cool down or warm up to the ambient temperature.

WARNING

Risk of personal injury due to exhaust air being vented.
While the valve is operating, the actuator, for example, may vent during closed-loop operation or when the valve opens or closes.

⇒ Wear eye protection when working in close proximity to the control valve.

WARNING

Risk of personal injury due to residual process medium in the valve.
While working on the valve, residual medium can flow out of the valve and, depending on its properties, cause personal injury, e.g. (chemical) burns.

⇒ Wear protective clothing, safety gloves, respiratory protection and eye protection.

To decommission the control valve for service work or to remove it from the pipeline, proceed as follows:

1. Close the shut-off valves upstream and downstream of the control valve to stop the process medium from flowing through the valve.
2. Completely drain the pipelines and valve.
11 Removal

The work described in this section is only to be performed by personnel appropriately qualified to carry out such tasks.

WARNING

Risk of burn injuries due to hot or cold components and pipeline.
Valve components and the pipeline may become very hot or cold. Risk of burn injuries.

- Allow components and pipelines to cool down or warm up to the ambient temperature.
- Wear protective clothing and safety gloves.

WARNING

Crush hazard arising from actuator and plug stem moving.

- Do not insert hands or finger into the yoke while the air supply is connected to the actuator.
- Before working on the control valve, disconnect and lock the pneumatic air supply as well as the control signal.
- Do not impede the movement of the actuator and plug stem by inserting objects into the yoke.
- Before unblocking the actuator and plug stem after they have become blocked (e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See associated actuator documentation.

WARNING

Risk of personal injury due to residual process medium in the valve.
While working on the valve, residual medium can flow out of the valve and, depending on its properties, cause personal injury, e.g. (chemical) burns.

- Wear protective clothing, safety gloves, respiratory protection and eye protection.

WARNING

Risk of personal injury due to preloaded springs.
Actuators with preloaded springs are under tension. They can be identified by the long bolts protruding from the bottom of the actuator.

- Before starting any work on the actuator, relieve the compression from the pre-loaded springs.

Before removing the valve, make sure the following conditions are met:
- The control valve is put out of operation (see the 'Decommissioning' section).
Removal

11.1 Removing the valve from the pipeline

a) Version with flanges

1. Support the valve to hold it in place when separated from the pipeline (see the 'Shipment and on-site transport' section).
2. Unbolt the flange joint.
3. Remove the valve from the pipeline (see the 'Shipment and on-site transport' section).

b) Version with welding ends

1. Support the valve to hold it in place when separated from the pipeline (see the 'Shipment and on-site transport' section).
2. Cut the pipeline in front of the weld seam.
3. Remove the valve from the pipeline (see the 'Shipment and on-site transport' section).

11.2 Removing the actuator from the valve

See associated actuator documentation.
12 Repairs

If the valve does not function properly according to how it was originally sized or does not function at all, it is defective and must be repaired or exchanged.

⚠️ NOTICE
Risk of valve damage due to incorrect repair work.
- Do not perform any repair work on your own.
- Contact SAMSON's After-sales Service for repair work.

12.1 Returning devices to SAMSON

Defective devices can be returned to SAMSON for repair.

Proceed as follows to return devices:

1. Exceptions apply concerning some special device models

2. Send an e-mail retouren@samsongroup.com to register the return shipment including the following information:
 - Type
 - Article no.
 - Configuration ID
 - Original order

 - Completed Declaration on Contamination, which can be downloaded from our website at www.samsongroup.com > Service & Support > After-sales Service.

 After checking your registration, we will send you a return merchandise authorization (RMA).

3. Attach the RMA (together with the Declaration on Decontamination) to the outside of your shipment so that the documents are clearly visible.

4. Send the shipment to the address given on the RMA.

⚠️ Note
Further information on returned devices and how they are handled can be found at www.samsongroup.com > Service & Support > After-sales Service.
13 Disposal

- Observe local, national and international refuse regulations.
- Do not dispose of components, lubricants and hazardous substances together with your household waste.
14 Certificates

The declarations of conformity are included on the next pages:

− Declaration of conformity in compliance with Machinery Directive 2006/42/EC for Types 3256-1 and 3256-7 Control Valves on page 14-3

− Declaration of incorporation in compliance with Machinery Directive 2006/42/EC for the Type 3256 Valve with other actuators other than Types 3271 and 3277 Actuators on page 14-4
EU Declaration of Conformity

Translation

Module H / N° CE-0062-PED-H-SAM 001-20-DEU

For the following products, SAMSON hereby declares under its sole responsibility:

<table>
<thead>
<tr>
<th>Devices</th>
<th>Series</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe valve</td>
<td>240</td>
<td>3241</td>
<td>DIN, body of cast iron from DIN 156, body of spherical-granular iron, from DIN 100, fluids G2, L1, L2*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIN/ANSI, body of steel, etc., all fluids</td>
</tr>
<tr>
<td>Three-way valve</td>
<td>240</td>
<td>3244</td>
<td>DIN, body of cast iron from DIN 156, body of spherical-granular iron, from DIN 100, fluids G2, L1, L2*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIN/ANSI, body of steel, etc., all fluids</td>
</tr>
<tr>
<td>Cryogenic valve</td>
<td>240</td>
<td>3246</td>
<td>DIN/ANSI, all fluids</td>
</tr>
<tr>
<td>Globe valve</td>
<td>250</td>
<td>3251</td>
<td>DIN/ANSI, all fluids</td>
</tr>
<tr>
<td>Three-way valve</td>
<td>250</td>
<td>3252</td>
<td>DIN/ANSI, body of steel, etc., all fluids</td>
</tr>
<tr>
<td>Globe valve</td>
<td>250</td>
<td>3254</td>
<td>DIN/ANSI, all fluids</td>
</tr>
<tr>
<td>Angle valve</td>
<td>250</td>
<td>3256</td>
<td>DIN/ANSI, all fluids</td>
</tr>
<tr>
<td>Ball valve</td>
<td>250</td>
<td>3256</td>
<td>DIN, all fluids</td>
</tr>
<tr>
<td>Angle valve (IG standards)</td>
<td>250</td>
<td>3256</td>
<td>DIN, all fluids</td>
</tr>
<tr>
<td>Steam-converting valve</td>
<td>280</td>
<td>3256</td>
<td>DIN/ANSI, all fluids</td>
</tr>
<tr>
<td>Globe valve</td>
<td>3256</td>
<td></td>
<td>DIN, body of steel, etc., all fluids</td>
</tr>
<tr>
<td>Three-way valve</td>
<td>3256</td>
<td></td>
<td>DIN/ANSI, all fluids</td>
</tr>
<tr>
<td>Angle seat valve</td>
<td>3256</td>
<td></td>
<td>DIN, body of steel, etc., all fluids</td>
</tr>
<tr>
<td>Blow-off</td>
<td>3256</td>
<td></td>
<td>DIN/ANSI, all fluids</td>
</tr>
<tr>
<td>Globe valve</td>
<td>V2001</td>
<td>3321</td>
<td>DIN, body of steel, etc., all fluids</td>
</tr>
<tr>
<td>Three-way valve</td>
<td>V2001</td>
<td>3323</td>
<td>DIN/ANSI, all fluids</td>
</tr>
<tr>
<td>Angle seat valve</td>
<td>V2001</td>
<td>3325</td>
<td>DIN, body of steel, etc., all fluids</td>
</tr>
<tr>
<td>Blow-off</td>
<td>V2001</td>
<td>3326</td>
<td>DIN/ANSI, all fluids</td>
</tr>
<tr>
<td>Cryogenic valve</td>
<td>240</td>
<td>3241</td>
<td>DIN/ANSI, single Everett plate with welding ends, all fluids</td>
</tr>
<tr>
<td>Globe valve</td>
<td>240</td>
<td>3246</td>
<td>DIN/ANSI, single Everett plate multi-stage with welding ends, all fluids</td>
</tr>
<tr>
<td>Three-way valve</td>
<td>250</td>
<td>3253</td>
<td>DIN/ANSI, body of cast iron from DIN 100, fluids G2, L1, L2*</td>
</tr>
<tr>
<td>Globe valve</td>
<td>250</td>
<td>3291</td>
<td>ANSI, all fluids</td>
</tr>
<tr>
<td>Angle valve</td>
<td>250</td>
<td>3296</td>
<td>ANSI, all fluids</td>
</tr>
<tr>
<td>Globe valve</td>
<td>650</td>
<td>3591</td>
<td>ANSI, all fluids</td>
</tr>
<tr>
<td>Angle valve</td>
<td>650</td>
<td>3596</td>
<td>ANSI, all fluids</td>
</tr>
<tr>
<td>Cryogenic valve</td>
<td>650</td>
<td>3596</td>
<td>ANSI, NPS 3 to NPS 8, Class 900, all fluids</td>
</tr>
<tr>
<td>Control valve</td>
<td>3596</td>
<td></td>
<td>ANSI, all fluids</td>
</tr>
</tbody>
</table>

Figures according to Article 4(1)(c), second indent. Liquids according to Article 4(1)(c-1).

The products mentioned above comply with the requirements of the following standards:

- 2014/68/EU of 15 May 2014

The manufacturer's quality management system is monitored by the following notified body:
- Bureau Veritas Services SAS, 3 Cours du Triangle, 92800 PUTEAUX - LA DEFENSE
- Technical standards applied: DIN EN 12861-3, DIN EN12861-3, ASME B16.34

Manufacturer: SAMSON AG, Welsnestederstrasse 3, 60314 Frankfurt am Main, Germany
Frankfurt an der Main, 15 May 2020

Dr. Andreas Weil
Chief Executive Officer (CEO)

Dr. Thomas Schickert
Chief Technology Officer (CTO)

Revision 07

Classification: Public - SAMSON AKTIENGESELLSCHAFT - Welsnestederstrasse 3 - 60314 Frankfurt am Main, Germany
Page 1 of 1
EU DECLARATION OF CONFORMITY

TRANSLATION

Declaration of Conformity of Final Machinery
in accordance with Annex II, section 1 A. of the Directive 2006/42/EC

For the following products:
Types 3256-1/7 Pneumatic Control Valves consisting of the Type 3256 Valve and Type 3271/Type 3277 Pneumatic Actuator

We hereby declare that the machinery mentioned above complies with all applicable requirements stipulated in Machinery Directive 2006/42/EC.

For product descriptions of the valve and actuator, refer to:
- Type 3256 Valve (DIN): Mounting and Operating Instructions EB 8065
- Type 3256 Valve (ANSI): Mounting and Operating Instructions EB 8065
- Type 3271 and 3277 Actuators: Mounting and Operating Instructions EB 8310-X

Valve accessories (e.g. positioners, limit switches, solenoid valves, lock-up valves, supply pressure regulators, volume boosters and quick exhaust valves) are classified as machinery components in this declaration of conformity and do not fall within the scope of the Machinery Directive as specified in § 35 and § 45 of the Guide to Application of the Machinery Directive 2006/42/EC issued by the European Commission. In the SAMSON Manual H 02 titled "Appropriate Machinery Components for SAMSON Pneumatic Control Valves with a Declaration of Conformity of Final Machinery", SAMSON defines the specifications and properties of appropriate machinery components that can be mounted onto the above specified final machinery.

Referenced technical standards and/or specifications:
- VCI, VDMA, VGB: "Leitfaden Maschinenrichtlinie (2006/42/EG) – Bedeutung für Armaturen, Mai 2018" [German only]

Comment:
Information on residual risks of the machinery can be found in the mounting and operating instructions of the valve and actuator as well as in the referenced documents listed in the mounting and operating instructions.

Persons authorized to compile the technical file:
SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany
Frankfurt am Main, 19 Mai 2020

[Signatures of authorized persons]

Peter Scheermesser
Director
Product Life Cycle Management and ETO
Development for Valves and Actuators

Classification: Public - SAMSON AKTIENGESELLSCHAFT · Weismüllerstraße 3 · 60314 Frankfurt, Germany
Page 1 of 1

EB 8066 EN

14-3
Declaration of Incorporation in Compliance with Machinery Directive 2006/42/EC

For the following products:
Type 3256 Pneumatic Control Valve

We certify that the Type 3256 Pneumatic Control Valves are partly completed machinery as defined in the Machinery Directive 2006/42/EC and that the safety requirements stipulated in Annex I, 1.1.2, 1.1.3, 1.1.5, 1.3.2, 1.3.4 and 1.3.7 are observed. The relevant technical documentation described in Annex VII, part B has been compiled.

Products we supply must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of the Machinery Directive 2006/42/EC.

Operators are obliged to install the products observing the accepted industry codes and practices (good engineering practice) as well as the mounting and operating instructions. Operators must take appropriate precautions to prevent hazards that could be caused by the process medium and operating pressure in the valve as well as by the signal pressure and moving parts.

The permissible limits of application and mounting instructions for the products are specified in the associated data sheets as well as the mounting and operating instructions; the documents are available in electronic form on the Internet at www.samsongroup.com.

For product descriptions of the valve, refer to:
- Type 3256 Valve (DIN): Mounting and Operating Instructions EB 8055
- Type 3256 Valve (ANSI): Mounting and Operating Instructions EB 8066

Referenced technical standards and/or specifications:
- VDI, VDMA, VGB: Leitfaden Maschinenrichtlinie (2006/42/EG) – Bedeutung für Armaturen, Mai 2018 [German only]

Comments:
- See mounting and operating instructions for residual hazards.
- Also observe the referenced documents listed in the mounting and operating instructions.

Persons authorized to compile the technical file:

SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany
Frankfurt am Main, 20 May 2020

Gudrun Muth
Senior Director
Sales and After-Sales

Peter Scheinemesser
Director
Product Life Cycle Management and ETO
Development for Valves and Actuators

Revision no. 00
Classification: Public - SAMSON AKTIENGESELLSCHAFT Weismüllerstraße 3, 60314 Frankfurt am Main, Germany
15 Annex

15.1 Tightening torques, lubricants and tools

AB 0100 for tools, tightening torques and lubricants

15.2 Spare parts

1 Body
2 Bonnet
3 Yoke
4 Seat
5 Plug
6 Bellows nut
7 Guide bushing
8 Threaded bushing (packing nut)
9 Stem connector nut
10 Lock nut
11 Spring
12 Washer
13 Stud bolt
14 Body nut
15 Packing
16 V-ring packing
17 Body gasket
19 Bushing
21 Insulating section
22 Bellows seal
24 Guide bushing
26 Label (bellows seal or insulating section)
27 Flange
28 Clamping ring
29 Plug for version with bellows seal
30 Retaining washers
31 Washer
32 Bolt
33 Nut
37 Plug stem with metal bellows
39 Gasket
42 Screw plug
43 Seal
44 Ring/ring nut ¹)
45 Packing ring ¹)
46 Gasket ¹)
47 Support ¹)
48 Hex screw ¹)
49 Hex screw ¹)
50 Lock ¹)
51 Guide ¹) (several guides only for version with graphite seal)
52 Ring ¹) (only for version with graphite seal)
53 Snap ring ¹)
61 Flow divider ST 2 ²)
62 Flow divider ST 1 or ST 3 ²)
63 Ring ²)
64 Gasket ²)
65 Gasket ²)
80 Nameplate
81 Grooved pin
82 Screw
83 Hanger
84 Travel indicator scale
85 Screw
91 Protective caps
92 Castellated nut
93 Expansion sleeve
94 Expansion sleeve ³)
101 Bellows bonnet
102 Screw with snap ring ¹)

¹) Version with balanced valve plug
²) Version with flow divider
³) For NPS ½ to 6 only
15.3 After-sales service

Contact our after-sales service for support concerning service or repair work or when malfunctions or defects arise.

E-mail address

You can reach our after-sales service at aftersalesservice@samsongroup.com.

Addresses of SAMSON AG and its subsidiaries

The addresses of SAMSON AG, its subsidiaries, representatives and service facilities worldwide can be found on our website (www.samsongroup.com) or in all SAMSON product catalogs.

Required specifications

Please submit the following details:

- Order number and position number in the order
- Type, model number, nominal size and valve version
- Pressure and temperature of the process medium
- Flow rate in cu.ft/min or m³/h
- Bench range of the actuator (e.g. 0.2 to 1 bar)
- Is a strainer installed?
- Installation drawing