Type 3271 Pneumatic Actuator
Actuator areas: 1400-120 cm² · 2800 cm² · 2 x 2800 cm²
Note on these mounting and operating instructions

These mounting and operating instructions assist you in mounting and operating the device safely. The instructions are binding for handling SAMSON devices. The images shown in these instructions are for illustration purposes only. The actual product may vary.

➔ For the safe and proper use of these instructions, read them carefully and keep them for later reference.

➔ If you have any questions about these instructions, contact SAMSON’s After-sales Service Department (aftersaleservice@samsongroup.com).

The mounting and operating instructions for the devices are included in the scope of delivery. The latest documentation is available on our website at www.samsongroup.com > Service & Support > Downloads > Documentation.

Definition of signal words

⚠️ **DANGER**
Hazardous situations which, if not avoided, will result in death or serious injury

⚠️ **WARNING**
Hazardous situations which, if not avoided, could result in death or serious injury

⚠️ **NOTICE**
Property damage message or malfunction

ℹ️ **Note**
Additional information

☀️ **Tip**
Recommended action
Contents

1 Safety instructions and measures ...1-1
 1.1 Notes on possible severe personal injury ..1-3
 1.2 Notes on possible personal injury ...1-4
 1.3 Notes on possible property damage ..1-5
 1.4 Warnings on the device ...1-6

2 Markings on the device ...2-1
 2.1 Actuator nameplate ...2-1
 2.2 Label indicating actuator with preloaded springs2-2

3 Design and principle of operation ..3-1
 3.1 Direction of action ...3-1
 3.2 Signal pressure routing ...3-1
 3.3 Fail-safe action ..3-3
 3.3.1 Version with direction of action "actuator stem extends"3-3
 3.3.2 Version with direction of action "actuator stem retracts"3-3
 3.4 Versions ..3-3
 3.5 Accessories ..3-3
 3.6 Technical data ...3-4

4 Shipment and on-site transport ...4-1
 4.1 Accepting the delivered goods ..4-1
 4.2 Removing the packaging from the actuator ...4-1
 4.3 Transporting and lifting the actuator ..4-1
 4.3.1 Transporting the actuator ..4-2
 4.3.2 Lifting the actuator ..4-2
 4.4 Storing the actuator ..4-4

5 Mounting and assembly ...5-1
 5.1 Preparation for installation ..5-1
 5.2 Mounting the device ..5-1
 5.2.1 Mounting the actuator onto the valve5-2
 5.2.2 Connecting the air supply ...5-2

6 Start-up ..6-1
 6.1 Preloading the springs ...6-2
 6.1.1 Tensioning the springs ...6-2
 6.1.2 Increasing the actuator thrust ...6-4
 6.1.3 Adapting the travel range ...6-4
 6.2 Version with handwheel ..6-5
Contents

7 **Operation** ..7-1
7.1 Throttling service ..7-1
7.2 On/off service ..7-1
7.3 Manual mode (versions with handwheel only) ...7-2
7.4 Additional notes concerning operation ..7-2

8 **Malfunctions** ..8-1
8.1 Troubleshooting ..8-1
8.2 Emergency action ...8-2

9 **Service and conversion** ...9-1
9.1 Periodic testing ..9-1
9.2 Service or conversion work ..9-1

10 **Decommissioning** ..10-1

11 **Removal** ..11-1
11.1 Removing the actuator from the valve ...11-2
11.2 Relieving the spring compression in the actuator11-2

13 **Disposal** ..13-1

14 **Certificates** ...14-1

15 **Annex** ...15-1
15.1 Tightening torques, lubricants and tools ...15-1
15.2 Spare parts ..15-1
15.3 After-sales service ..15-5
1 Safety instructions and measures

Intended use

The SAMSON Type 3271 Actuator is designed for operating a mounted globe valve. In combination with the valve, the actuator is used to shut off the flow of liquids, gases or vapors in the pipeline. Depending on the version, the actuator is suitable for throttling or on/off service. The actuator can be used in processing and industrial plants.

The actuator is designed to operate under exactly defined conditions (e.g. thrust, travel). Therefore, operators must ensure that the actuator is only used in operating conditions that meet the specifications used for sizing the actuator at the ordering stage. In case operators intend to use the actuator in other applications or conditions than specified, contact SAMSON.

SAMSON does not assume any liability for damage resulting from the failure to use the device for its intended purpose or for damage caused by external forces or any other external factors.

Refer to the technical data and nameplate for limits and fields of application as well as possible uses.

Reasonably foreseeable misuse

The actuator is not suitable for the following applications:

− Use outside the limits defined during sizing and by the technical data
− Use outside the limits defined by the accessories connected to the actuator

Furthermore, the following activities do not comply with the intended use:

− Use of non-original spare parts
− Performing service and repair work not described in these instructions

Qualifications of operating personnel

The actuator must be mounted, started up, serviced and repaired by fully trained and qualified personnel only; the accepted industry codes and practices are to be observed. According to these mounting and operating instructions, trained personnel refers to individuals who are able to judge the work they are assigned to and recognize possible hazards due to their specialized training, their knowledge and experience as well as their knowledge of the applicable standards.
Safety instructions and measures

Personal protective equipment
We recommend wearing the following personal protective equipment when handling the Type 3271 Pneumatic Actuator:
− Protective gloves and safety footwear when mounting or removing the actuator
− Eye protection and hearing protection while the actuator is operating.
➔ Check with the plant operator for details on further protective equipment.

Revisions and other modifications
Revisions, conversions or other modifications of the product are not authorized by SAMSON. They are performed at the user's own risk and may lead to safety hazards, for example. Furthermore, the product may no longer meet the requirements for its intended use.

Safety devices
The Type 3271 Actuator does not have any special safety equipment.

Warning against residual hazards
To avoid personal injury or property damage, plant operators and operating personnel must prevent hazards that could be caused in the actuator by the signal pressure, stored spring energy or moving parts by taking appropriate precautions. They must observe all hazard statements, warning and caution notes in these mounting and operating instructions.

Responsibilities of the operator
The operator is responsible for proper operation and compliance with the safety regulations. Operators are obliged to provide these mounting and operating instructions as well as the referenced documents to the operating personnel and to instruct them in proper operation. Furthermore, the operator must ensure that operating personnel or third persons are not exposed to any danger.

Responsibilities of operating personnel
Operating personnel must read and understand these mounting and operating instructions as well as the referenced documents and observe the specified hazard statements, warnings and caution notes. Furthermore, the operating personnel must be familiar with the applicable health, safety and accident prevention regulations and comply with them.
Safety instructions and measures

Referenced standards and regulations
According to the ignition risk assessment performed in accordance with EN 13463-1:2009, section 5.2, the non-electrical actuators do not have their own potential ignition source even in the rare incident of an operating fault. As a result, they do not fall within the scope of Directive 2014/34/EU.

⇒ For connection to the equipotential bonding system, observe the requirements specified in section 6.4 of EN 60079-14 (VDE 0165 Part 1).

Referenced documentation
The following documents apply in addition to these mounting and operating instructions:

− Mounting and operating instructions for the mounted valve
− Mounting and operating instructions for mounted valve accessories (positioner, solenoid valve etc.)
− Safety Manual ► SH 8310 for use in safety-instrumented systems
− ► AB 0100 for tools, tightening torques and lubricant

1.1 Notes on possible severe personal injury

⚠️ DANGER

Risk of bursting in the actuator.
Actuators are pressurized. Improper opening can lead to actuator components bursting.

⇒ Before starting any work on the actuator, depressurize all plant sections affected and the actuator.
1.2 Notes on possible personal injury

WARNING

Crush hazard arising from moving parts.
The actuator contains moving parts (actuator stem), which can injure hands or fingers if inserted into the actuator.

- Do not touch the actuator stem or insert hands or finger into the yoke or beneath the actuator stem while the air supply is connected to the actuator.
- While working on the actuator, disconnect and lock the pneumatic air supply as well as the control signal.
- Do not impede the movement of the actuator stem by inserting objects into the yoke.
- Before unblocking the actuator stem after it has become blocked (e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See 'Relieving the spring compression in the actuator' in the 'Removal' section.

Risk of personal injury when the actuator vents.
The actuator is operated with air. As a result, air is vented during operation.

- Install the control valve in such a way that vent holes are not located at eye level and the actuator does not vent at eye level in the work position ¹)
- Use suitable silencers and vent plugs.
- Wear eye and hearing protection when working near the actuator.

Risk of personal injury due to preloaded springs.
Actuators with preloaded springs are under tension. These actuators can be identified by several longer bolts with nuts protruding from the bottom diaphragm case. These bolts allow the spring compression to be relieved evenly on disassembling the actuator. Actuators with considerably preloaded springs are also labeled correspondingly (see the 'Markings on the device' section).

- Before starting any work on the actuator, relieve the compression from the preloaded springs. See 'Relieving the spring compression in the actuator' in the 'Removal' section.

¹) If not described otherwise in the valve documentation, the work position for the control valve is the front view looking onto the operating controls (including valve accessories).
Safety instructions and measures

WARNING

Risk of personal injury through incorrect operation, use or installation as a result of information on the actuator being illegible.

Over time, markings, labels and nameplates on the actuator may become covered with dirt or become illegible in some other way. As a result, hazards may go unnoticed and the necessary instructions not followed. There is a risk of personal injury.

- Keep all relevant markings and inscriptions on the device in a constantly legible state.
- Immediately renew damaged, missing or incorrect nameplates or labels.

1.3 Notes on possible property damage

NOTICE

Risk of actuator damage due to incorrectly attached slings.

- Do not attach load-bearing slings to the handwheel or travel stop.

Risk of actuator damage due to excessively high or low tightening torques.

Observe the specified torques on tightening actuator components. Excessively tightened torques lead to parts wearing out quicker. Parts that are not tightened far enough may loosen.

- Observe the specified tightening torques (▶ AB 0100).

Risk of actuator damage due to the use of unsuitable tools.

Certain tools are required to work on the actuator.

- Only use tools approved by SAMSON (▶ AB 0100).

Risk of actuator damage due to the use of unsuitable lubricants.

The lubricants to be used depend on the actuator material. Unsuitable lubricants may corrode and damage the surface.

- Only use lubricants approved by SAMSON (▶ AB 0100).
1.4 **Warnings on the device**

<table>
<thead>
<tr>
<th>Warning</th>
<th>Meaning of the warning</th>
<th>Location on the device</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td>Warning against the incorrect use of the lifting eyelet/eyebolt or swivel hoist on SAMSON actuators. Only attach load-bearing slings to them to vertically lift the actuator on its own (without the valve). The lifting eyelet/eyebolt and the swivel hoist must not be used to vertically lift the entire control valve assembly.</td>
<td></td>
</tr>
</tbody>
</table>
2 Markings on the device

2.1 Actuator nameplate

The nameplate is stuck on the diaphragm casing. It includes all details required to identify the device:

1. Type number
2. Country of origin
3. Material configuration number
4. Serial number
5. Actuator area
6. Bench range in bar
7. Bench range in psi
8. Operating travel in mm
9. Operating range in bar
10. Operating range in psi
11. Permissible supply pressure p_{max} in bar
12. Permissible supply pressure p_{max} in psi
13. Symbol indicating fail-safe action
 - Actuator stem extends (FA)
 - Actuator stem retracts (FE)
 - Manual override
14. Diaphragm material
15. Connecting thread
16. Date of manufacture
17. Data Matrix code

Fig. 2-1: Nameplate of Type 3271 Actuator
2.2 Label indicating actuator with preloaded springs

A label on the actuator indicates that the actuator springs are preloaded in the delivered state (see Fig. 2-2).

![Fig. 2-2: Adhesive label indicating preloaded actuator springs in the delivered state](image-url)
3 Design and principle of operation

See Fig. 3-1

The Type 3271 Pneumatic Actuators with 1400-120 cm², 2800 cm² and 2x 2800 cm² actuator areas contain a rolling diaphragm (A4) and internal springs (A10). They are mounted on SAMSON Series 240, 250, 280 and 290 Valves.

The signal pressure p_{st} creates the force $F = p_{st} \cdot A$ at the diaphragm surface A which is opposed by the springs (A10) in the actuator. The bench range is determined by the number of springs used and their compression, taking into account the rated travel. The travel is proportional to the signal pressure p_{st}. The direction of action of the actuator stem (A7) depends on how the springs are installed in the actuator.

The stem connector clamps (A26) connect the actuator stem (A7) with the plug stem of the valve.

Actuators with 1400-120 cm² actuator area are fitted with an anti-rotation fixture (A88).

The tandem actuator contains two coupled diaphragms (A4). The single pressure produces a thrust at the two diaphragms that is twice as high as the thrust of a single actuator.

3.1 Direction of action

The direction of action is determined by how the springs and diaphragm plate are arranged in the actuator.

With direction of action "actuator stem extends", the compressed air is applied to the signal pressure connection on the bottom diaphragm case.

With direction of action "actuator stem retracts", the compressed air is applied to the signal pressure connection on the top diaphragm case.

3.2 Signal pressure routing

1400-120 cm² and 2800 cm²

In the "actuator stem extends" version, the signal pressure is routed through the bottom signal pressure connection (S) to the bottom diaphragm chamber and moves the actuator stem (A7) upward opposing the spring force.

In the "actuator stem retracts" version, the signal pressure is routed through the top signal pressure connection (S) to the top diaphragm chamber and moves the actuator stem (A7) downward opposing the spring force.

2 x 2800 cm² (tandem actuator)

In the "actuator stem extends" version, the signal pressure is routed through both bottom signal pressure connections (S) to the bottom diaphragm chamber and moves the actuator stem (A7) upward opposing the spring force.

In the "actuator stem retracts" version, the signal pressure is routed through both top signal pressure connections (S) to the top diaphragm chamber and moves the actuator stem (A7) downward opposing the spring force.
Design and principle of operation

Type 3271, 1400-120 cm²

Actuator stem retracts (FE) Actuator stem extends (FA)

Type 3271, 2 x 2800 cm² (tandem actuator)

- A4 Diaphragm
- A7 Actuator stem
- A8 Ring nut
- A10 Springs
- A16 Vent plug
- A26 Stem connector clamps
- A88 Anti-rotation fixture
- S Signal pressure connection

Fig. 3-1: Functional diagram
3.3 Fail-safe action

Note
The listed fail-safe actions apply to SAMSON globe valves.

When the signal pressure is reduced or the control signal fails, the fail-safe position of the control valve in throttling or on/off service depends on whether the springs are installed in the top or bottom diaphragm chamber.

Version with handwheel: in the active manual mode (the handwheel is not in the neutral position), the valve is not moved to the fail-safe position even upon failure of the supply air.

3.3.1 Version with direction of action "actuator stem extends"

When the signal pressure is reduced or the control signal fails, the springs move the actuator stem downward and close the globe valve. The valve opens when the signal pressure is increased enough to overcome the spring force.

3.3.2 Version with direction of action "actuator stem retracts"

When the signal pressure is reduced or the control signal fails, the springs move the actuator stem upward and open a mounted globe valve. The valve closes when the signal pressure is increased enough to overcome the spring force.

3.4 Versions

- Type 3271 as single actuator with 1400-120 cm² actuator area
- Type 3271 as single actuator with 2800 cm² actuator area
- Tandem actuator (2 x 2800 cm²)
- Version with side-mounted handwheel
 The actuators can be combined with a Type 3273 Side-mounted Handwheel with max. 120 mm travel (► T 8312).
- Travel stop
 The Type 3271 Pneumatic Actuator can be fitted with a mechanically adjustable travel stop. The travel is reduced by up to 50 % in both directions of action (stem extends or retracts).

3.5 Accessories

Swivel hoist
The pneumatic actuators with 1400-120, 2800 and 2 x 2800 cm² actuator area have a female thread on the top diaphragm case to allow an eyebolt or swivel hoist to be screwed into it. The eyebolt can be used to vertically lift the actuator and is included in the scope of delivery. The swivel hoist is designed for setting a control valve assembly upright or for lifting the actuator without valve. The swivel hoist can be ordered (accessories).
Design and principle of operation

<table>
<thead>
<tr>
<th>Actuator area</th>
<th>Item no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eyebolt</td>
</tr>
<tr>
<td>1400-120 cm²</td>
<td>8325-1101</td>
</tr>
<tr>
<td>2800 cm²</td>
<td></td>
</tr>
<tr>
<td>2 x 2800 cm²</td>
<td></td>
</tr>
</tbody>
</table>

Vent plugs
Vent plugs are screwed into the exhaust air ports of pneumatic and electropneumatic devices. They ensure that any exhaust air that forms can be vented to the atmosphere (to avoid excess pressure in the device). Furthermore, the vent plugs allow air intake to prevent a vacuum from forming in the device.

Feedback connection (travel pick-off interface) according to IEC 60534-6-1
Various valve accessories according to IEC 60534-6-1 and NAMUR recommendation can be mounted on SAMSON control valves designed according to the modular principle. See associated valve documentation. The travel pick-off interface for these mounted devices is included in the scope of delivery of the SAMSON Type 3271 Actuator with 1400-120, 2800 and 2 x 2800 cm² actuator areas.

3.6 Technical data
The nameplate provides information on the actuator version (see the 'Markings on the device' section).

Note
More information is available in Data Sheet T 8310-2.

Temperature range
The permissible temperature range depends on the diaphragm material:

<table>
<thead>
<tr>
<th>Diaphragm material</th>
<th>Temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBR 1)</td>
<td>-35 to +90 °C</td>
</tr>
<tr>
<td></td>
<td>-31 to +194 °F</td>
</tr>
<tr>
<td>PVMQ</td>
<td>-60 to +90 °C</td>
</tr>
<tr>
<td></td>
<td>-76 to +194 °F</td>
</tr>
</tbody>
</table>

1) In on/off service, lowest temperature restricted to -20 °C (-4 °F).

Supply pressure
The maximum permissible supply pressure is 6 bar in throttling service. See the 'Operation' section for restrictions in on/off service.

Conformity
The Type 3271 Pneumatic Actuator bears the EAC mark of conformity.
Design and principle of operation

Table 3-1: Dimensions in mm and weights in kg

<table>
<thead>
<tr>
<th>Actuator area</th>
<th>cm²</th>
<th>1400-120</th>
<th>2800</th>
<th>2 x 2800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator area</td>
<td>cm²</td>
<td>1400-120</td>
<td>2800</td>
<td>2 x 2800</td>
</tr>
<tr>
<td>H/H' 1)</td>
<td>470</td>
<td>585</td>
<td>1085</td>
<td></td>
</tr>
<tr>
<td>H₃rod FA</td>
<td>285</td>
<td>315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₄max FA</td>
<td>288</td>
<td>325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₄max FE</td>
<td>315</td>
<td>355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₆</td>
<td>85</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₇ 2)</td>
<td>128</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel limitation</td>
<td>H₈</td>
<td>500</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>ØD</td>
<td>534</td>
<td>770</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ØD2</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Ød (thread)</td>
<td>M100x2</td>
<td>M100x2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air connection</td>
<td>a</td>
<td>G 1/1 NPT</td>
<td>G 1/1 NPT</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without handwheel</td>
<td></td>
<td>175</td>
<td>450</td>
<td>950</td>
</tr>
</tbody>
</table>

1) In versions in which the lifting eyelet is welded directly onto the housing or the design does not allow for a horizontal connecting surface on the housing, H' and H are identical.

2) Height of eyebolt according to DIN 580. Height of the swivel hoist may differ.
Design and principle of operation

Dimensional drawings

Type 3271 with 1400-120 and 2800 cm² actuator areas

Type 3271 as tandem actuator with 2 x 2800 cm² actuator areas
4 Shipment and on-site transport

The work described in this section is only to be performed by personnel qualified for the assignment accordingly.

4.1 Accepting the delivered goods

After receiving the shipment, proceed as follows:
1. Check the scope of delivery. Check that the specifications on the actuator nameplate match the specifications in the delivery note. See the 'Markings on the device' section for nameplate details.
2. Check the shipment for transportation damage. Report any damage to SAMSON and the forwarding agent (refer to delivery note).
3. Determine the weight and dimensions of the units to be lifted and transported in order to select the appropriate lifting equipment and lifting accessories. Refer to the transport documents and the 'Technical data' section.

4.2 Removing the packaging from the actuator

Observe the following sequence:
- Do not open or remove the packaging until immediately before mounting the actuator.
- Leave the actuator in its transport container or on the pallet to transport it on site.
- Dispose and recycle the packaging in accordance with the local regulations.

4.3 Transporting and lifting the actuator

DANGER
Risk due to suspended loads falling.
- Stay clear of suspended or moving loads.
- Close off and secure the transport paths.

WARNING
Risk of lifting equipment tipping over and risk of damage to lifting accessories due to exceeding the rated lifting capacity.
- Only use approved lifting equipment and accessories whose minimum lifting capacity is higher than the weight of the actuator (including the packaging, if applicable).

NOTICE
Risk of actuator damage due to incorrectly attached slings.
The lifting eyelet/eyebolt or swivel hoist on the top diaphragm case is only intended for mounting and removing the actuator as well as lifting the actuator without the valve. The lifting eyelet/eyebolt and the swivel hoist must not be used to vertically lift the entire control valve assembly.
Shipment and on-site transport

➔ Do not attach load-bearing slings to the handwheel or travel stop.
➔ Observe lifting instructions (see section 4.3.2).

Tip
Our after-sales service can provide more detailed transport and lifting instructions on request.

4.3.1 Transporting the actuator

The actuator can be transported using lifting equipment (e.g. crane or forklift).
➔ Leave the actuator in its transport container or on the pallet to transport it.
➔ Observe the transport instructions.

Transport instructions

– Protect the actuator against external influences (e.g. impact).
– Do not damage the corrosion protection (paint, surface coatings). Repair any damage immediately.
– Protect the actuator against moisture and dirt.
– Observe permissible temperatures (see 'Technical data' in the 'Design and principle of operation' section).

4.3.2 Lifting the actuator

To mount large actuators onto the valve, use lifting equipment (e.g. crane or forklift) to lift it.

Lifting instructions

– Use a hook with safety latch (see Fig. 4-5) to secure the slings from slipping during lifting and transporting.
– Secure slings on the object to be transported against slipping.
– Make sure the slings can be removed from the actuator once it has been mounted on the valve.
– Prevent the actuator from tilting or tipping.
– Do not leave loads suspended when interrupting work for longer periods of time.

a) Lifting the actuator (without valve)

1. Open the eyebolt cover by lightly pressing the side clips (see Fig. 4-3 and Fig. 4-4).
2. Attach a sling to the lifting eyelet/eyebolt or swivel hoist of the actuator and to the rigging equipment (e.g. hook) of the crane or forklift (see Fig. 4-5).
3. Carefully lift the actuator. Check whether the lifting equipment and accessories can bear the weight.
4. Move the actuator at an even pace to the mounting site.
5. Mount the actuator to the valve (see the 'Mounting and assembly' section).

6. Remove slings after mounting and replace the cover on the eyebolt (see Fig. 4-4 and Fig. 4-3).

b) Lifting the entire control valve assembly

A swivel hoist can be screwed into versions with a female thread on the top diaphragm case of the actuator in place of the eyebolt (see 'Accessories' in the 'Design and principle of operation' section). In contrast to the eyebolt, the swivel hoist is designed for setting a control valve assembly upright.

In order to lift an entire control valve assembly, the slings attached to the valve body must bear the entire load. The sling between the lashing point on the actuator and rigging equipment (hook, shackle etc.) must not bear any load. The sling only protects the control valve from tilting while being lifted. Before lifting the control valve, tighten the sling.

➔ See associated valve documentation for instructions on how to lift a control valve.
4.4 Storing the actuator

NOTICE

Risk of actuator damage due to improper storage.

- Observe the storage instructions.
- Avoid long storage times.
- Contact SAMSON in case of different storage conditions or long storage periods.

Note

We recommend regularly checking the actuator and the prevailing storage conditions during long storage times.

Storage instructions

- When the valve and actuator are already assembled, observe the storage conditions for control valves. See associated valve documentation.
- Protect the actuator against external influences (e.g. impact).
Shipment and on-site transport

- Secure the actuator in the stored position against slipping or tipping over.
- Do not damage the corrosion protection (paint, surface coatings). Repair any damage immediately.
- Protect the actuator against moisture and dirt. Store it at a relative humidity of less than 75%. In damp spaces, prevent condensation. If necessary, use a drying agent or heating.
- Make sure that the ambient air is free of acids or other corrosive media.
- Observe permissible temperatures (see 'Technical data' in the 'Design and principle of operation' section).
- Do not place any objects on the actuator.

Special storage instructions for elastomers

Elastomer, e.g. actuator diaphragm
- To keep elastomers in shape and to prevent cracking, do not bend them or hang them up.
- We recommend a storage temperature of 15 °C for elastomers.
- Store elastomers away from lubricants, chemicals, solutions and fuels.

Tip

Our after-sales service can provide more detailed storage instructions on request.
5 Mounting and assembly
The work described in this section is only to be performed by personnel qualified for the assignment accordingly.

5.1 Preparation for installation
Before mounting, make sure the following conditions are met:
− The actuator is not damaged.
− The type designation, material and temperature range of the actuator match the ambient conditions (temperatures etc.). See the 'Markings on the device' section for nameplate details.

Proceed as follows:
→ Lay out the necessary material and tools to have them ready during mounting.
→ Check that the vent plugs to be used are not blocked.
→ Check any pressure gauges mounted on valve accessories to make sure they function properly.
→ When the valve and actuator are already assembled, check the tightening torques of the bolted joints (u AB 0100). Components may loosen during transport.

5.2 Mounting the device
Depending on the version, SAMSON control valves are either delivered with the actuator already mounted on the valve or the valve and actuator are delivered separately. When delivered separately, the valve and actuator must be assembled together on site. Proceed as follows to mount the actuator and before start-up.

⚠️ WARNING
Risk of personal injury due to exhaust air being vented.
The actuator is operated with air. As a result, air is vented during operation.
→ During mounting make sure that vent holes are not located at eye level in the work position of the control valve and the actuator does not vent at eye level in the work position.
→ Wear eye and hearing protection when working near the actuator.

⚠️ WARNING
Crush hazard arising from the moving actuator stem.
→ Do not touch the actuator stem or insert hands or finger into the yoke while the air supply is connected to the actuator.
→ Before working on the actuator, disconnect and lock the pneumatic air supply as well as the control signal.
→ Do not impede the movement of the actuator stem by inserting objects into the yoke.
→ Before unblocking the actuator stem after it has become blocked (e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See 'Relieving the spring compression in the actuator' in the 'Removal' section.
Mounting and assembly

NOTICE

Risk of actuator damage due to excessively high or low tightening torques.

Observe the specified torques on tightening actuator components. Excessively tightened torques lead to parts wearing out quicker. Parts that are not tightened far enough may loosen.

⇒ Observe the specified tightening torques (► AB 0100).

NOTICE

Risk of actuator damage due to the use of unsuitable tools.

⇒ Only use tools approved by SAMSON (► AB 0100).

5.2.1 Mounting the actuator onto the valve

To mount the actuator on the valve, proceed as follows:

Tip

The valve and actuator are assembled with special attention paid to the actuator’s bench range and direction of action. These details are specified on the actuator nameplate (see the 'Markings on the device' section).

1. Loosen the lock nut (10) and stem connector nut (9) on the valve.
2. Press the plug together with the plug stem firmly into the seat ring.
3. Thread down the lock nut and stem connector nut.
4. Remove the clamps of the stem connector (A26) and the ring nut (A8) from the actuator.
5. Slide the ring nut over the plug stem.
6. Place the actuator onto the valve bonnet (2) and secure it with the ring nut.
7. Connect the signal pressure. See section 5.2.2.
8. Screw on the stem connector nut (9) by hand until it touches the actuator stem (A7).
9. Turn the stem connector nut a further quarter turn and secure this position with the lock nut (10).
10. Position the stem connector clamps (A26) and screw them tight.
11. Align the travel indicator (84) with the tip of the stem connector clamp.

5.2.2 Connecting the air supply

Determine the lower and upper signal pressure range values before connecting the supply air:

- The lower signal pressure range value is the same as the minimum value of the bench range or operating range (with preloaded springs).
- The upper signal pressure range value is the same as the maximum value of the bench range or operating range (with preloaded springs).
For actuator springs that are to be pre-loaded subsequently, determine the upper and lower signal pressure range as described in 'Preloading the springs' in the 'Start-up' section.

a) Actuator stem extends

1. Apply a signal pressure that corresponds to the lower signal pressure range value to the connection on the bottom diaphragm case.
2. Screw the vent plug into the connection on the top diaphragm case.

b) Actuator stem retracts

1. Apply a signal pressure that corresponds to the upper signal pressure range value to the connection on the top diaphragm case.
2. Screw the vent plug into the connection on the bottom diaphragm case.
Mounting and assembly

Fig. 5-1: Type 3271 Pneumatic Actuator

2 Bonnet/flange
8 Threaded bushing
9 Stem connector nut
10 Lock nut
84 Travel indicator scale
A7 Actuator stem
A8 Ring nut
A26 Stem connector clamps
6 Start-up

The work described in this section is only to be performed by personnel qualified for the assignment accordingly.

DANGER

Risk of bursting due to incorrect opening of pressurized equipment or components.

Pneumatic actuators are pressure equipment that may burst when handled incorrectly. Flying projectile fragments or components can cause serious injury or even death. Before working on the actuator:

- Depressurize all plant sections concerned and the actuator. Release any stored energy.

WARNING

Risk of personal injury due to exhaust air being vented.

The actuator is operated with air. As a result, air is vented during operation.

- Wear eye and hearing protection when working near the actuator.

WARNING

Crush hazard arising from the moving actuator stem.

- Do not insert hands or fingers into the yoke while the air supply is connected to the actuator.
- Before working on the actuator, disconnect and lock the pneumatic air supply as well as the control signal.
- Do not impede the movement of the actuator stem by inserting objects into the yoke.
- Before unblocking the actuator stem after it has become blocked (e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See 'Relieving the spring compression in the actuator' in the 'Removal' section.

WARNING

Risk of personal injury due to preloaded springs.

Actuators with preloaded springs are under tension. These actuators can be identified by several longer bolts with nuts protruding from the bottom diaphragm case. Actuators with considerably preloaded springs are also labeled correspondingly (see the 'Markings on the device' section).

- Only open the actuator following the instructions in this document. See 'Relieving the spring compression in the actuator' in the 'Removal' section.
6.1 Preloading the springs

See Fig. 6-2 and Fig. 6-1

By preloading the springs in the actuator, the following can be achieved:

- The thrust is increased (only actuators with "stem extends")
- In combination with a SAMSON valve: the actuator travel range can be adapted to a smaller valve travel range

6.1.1 Tensioning the springs

Risk of actuator damage due to the springs being tensioned unevenly.

- Distribute clamping bolts and nuts evenly around the circumference.
- Tighten the nuts gradually in a crisscross pattern.

Actuator areas: 1400-120 and 2800 cm²

1. Distribute the long bolts (A22) evenly around the circumference.
2. Screw the long nuts (A23) together with shims (A25) onto the clamping bolts (A22) until they rest on the bottom diaphragm case (A2).
3. To tension the springs evenly, tighten the nuts (A23) gradually in a crisscross pattern until the diaphragm cases (A1, A2) rest on the diaphragm (A4). Hold the bolt head stationary with a suitable tool and apply the tightening torque to the nuts. Observe tightening torques.
Fig. 6-1: Single actuator with clamping nuts and bolts

A1 Top diaphragm case
A2 Bottom diaphragm case
A4 Diaphragm
A20 Hex bolt
A21 Hex nut
A22 Hex bolt (preloading)
A23 Hex nut (preloading)
A25 Shim
A80 Diaphragm case (tandem actuator)

Fig. 6-2: Tandem actuator with clamping nuts and bolts
4. Insert the short bolts (A20) through the intended holes in the diaphragm cases (A1, A2).

5. Screw the short nuts (A21) with shims (A25) onto the bolts (A20). Observe tightening torques.

2 x 2800 cm² actuator area

1. Distribute the long bolts (A22) evenly around the circumference of the top and bottom cases (A1, A2).

2. Screw the long nuts (A23) together with shims (A25) onto the clamping bolts (A22) until they rest on the diaphragm cases from below (A2, A80).

3. To tension the springs evenly, tighten the nuts (A23) gradually in a crisscross pattern until the diaphragm cases (A1 and A2 as well as A2 and A80) rest on the diaphragm (A4). Hold the bolt head stationary with a suitable tool and apply the tightening torque to the nuts. Observe tightening torques.

4. Insert the short bolts (A20) through the intended holes in the diaphragm cases (A1, A2, A80).

5. Screw the short nuts (A21) with shims (A25) onto the bolts (A20). Observe tightening torques.

6.1.2 Increasing the actuator thrust

The thrust can only be increased in actuators with "stem extends" direction of action. To achieve this, the springs of the actuators can be preloaded by up to 25 % of their travel or bench range.

Example: Preloading is required for a signal pressure range of 0.2 to 1 bar. 25 % of this span is 0.2 bar. Therefore, the signal pressure range is shifted by 0.2 bar to 0.4 to 1.2 bar. The new lower signal range value is 0.4 bar and the new upper signal range value 1.2 bar.

Write the new signal pressure range of 0.4 to 1.2 bar on the actuator nameplate as the operating range with preloaded springs.

6.1.3 Adapting the travel range

In some cases, the valve and actuator have different rated travels. Depending on the direction of action, proceed as follows:

Direction of action: actuator stem extends

Always use actuators with preloaded springs when the valve's rated travel is smaller than the rated travel of the actuator.

Example: DN 100 valve with 30 mm rated travel and 1400 cm² actuator with 60 mm rated travel; 0.4 to 2 bar bench range.

The signal pressure for half the actuator travel (30 mm) is 1.2 bar. Adding it to the lower signal pressure range value of 0.4 bar...
results in a signal pressure of 1.6 bar required for spring compression. The new lower signal range value is 1.6 bar and the new upper signal range value 2.4 bar.

→ Write the new signal pressure range of 1.6 to 2.4 bar on the actuator nameplate as the operating range with preloaded springs.

Direction of action: actuator stem retracts

The springs of actuators with "stem retracts" action cannot be preloaded. When a SAMSON valve is combined with an oversized actuator (e.g. the rated travel of the actuator is larger than the rated travel of the valve), only the first half of the actuator’s bench range can be used.

Example: DN 100 valve with 30 mm rated travel and 1400 cm² actuator with 60 mm rated travel; 0.2 to 1 bar bench range.

At half the valve travel, the operating range is between 0.2 and 0.6 bar.

6.2 Version with handwheel

See associated handwheel documentation ➤ EB 8312-1.

Note

Contact our after-sales service to retrofit an actuator with a handwheel.
7 Operation

The work described in this section is only to be performed by personnel qualified for the assignment accordingly.

WARNING

Risk of personal injury due to exhaust air being vented.
The actuator is operated with air. As a result, air is vented during operation.

- Wear eye and hearing protection when working near the actuator.

WARNING

Crush hazard arising from the moving actuator stem.

- Do not insert hands or finger into the yoke while the air supply is connected to the actuator.
- Before working on the actuator, disconnect and lock the pneumatic air supply as well as the control signal.
- Do not impede the movement of the actuator stem by inserting objects into the yoke.
- Before unblocking the actuator stem after it has become blocked (e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See 'Relieving the spring compression in the actuator' in the 'Removal' section.

7.1 Throttling service

The Type 3271 Pneumatic Actuator with 1400-120 cm², 2800 cm² and 2x 2800 cm² actuator areas is designed for a maximum supply pressure of 6 bar when used for throttling service.

7.2 On/off service

In on/off service, the supply pressure must be limited depending on the bench range or operating range of the actuator. The applicable bench range or operating range which the actuator can move through is written on the nameplate (see the 'Markings on the device' section).

Actuator stem retracts (FE)

For the direction of action "actuator stem retracts (FE)", the permissible supply pressure must not exceed the upper bench range value by more than 3 bar:
Operation

<table>
<thead>
<tr>
<th>Bench range</th>
<th>Fail-safe action</th>
<th>Max. supply pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 to 1.0 bar</td>
<td>Actuator stem retracts</td>
<td>4 bar</td>
</tr>
<tr>
<td>0.4 to 2.0 bar</td>
<td></td>
<td>5 bar</td>
</tr>
<tr>
<td>0.6 to 3.0 bar</td>
<td></td>
<td>6 bar</td>
</tr>
</tbody>
</table>

Actuator stem extends (FA)

With direction of action "actuator stem extends" and travel stop, the supply pressure must not exceed the upper bench range value by more than 1.5 bar.

7.3 Manual mode (versions with handwheel only)

In the manual mode, the valve is opened and closed by the handwheel. The valve position is independent of the signal pressure or actuator springs. See associated handwheel documentation ➤ EB 8312-1.

The handwheel must be in the neutral position to allow the actuator to move through its entire travel range in throttling or on/off service.

7.4 Additional notes concerning operation

- Label actuator with reduced supply pressure with a sticker ("Max. supply pressure limited to ... bar").
- Only apply the signal pressure to the signal pressure connection (S) on the diaphragm chamber of the actuator which does not contain any springs (see Fig. 3-1 in the 'Design and principle of operation' section).
- Only use vent plugs that let air through them (A16 in Fig. 3-1 in the 'Design and principle of operation' section).
8 Malfunctions

8.1 Troubleshooting

<table>
<thead>
<tr>
<th>Malfunction</th>
<th>Possible reasons</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator stem does not move on demand.</td>
<td>Actuator is blocked.</td>
<td>Check attachment. Unblock the actuator. WARNING! A blocked actuator (e.g. due to seizing up after remaining in the same position for a long time) can suddenly start to move uncontrollably. Injury to hands or fingers is possible if they are inserted into the actuator or valve. Before trying to unblock the actuator stem, disconnect and lock the pneumatic air supply as well as the control signal. Before unblocking the actuator stem, release any stored energy in the actuator (e.g. spring compression). See 'Relieving the spring compression in the actuator' in the 'Removal' section.</td>
</tr>
<tr>
<td>Insufficient signal pressure</td>
<td></td>
<td>Check the signal pressure. Check the signal pressure line for leakage.</td>
</tr>
<tr>
<td>Signal pressure not connected to the correct diaphragm chamber.</td>
<td></td>
<td>See 'Signal pressure routing' in the 'Design and principle of operation' section.</td>
</tr>
<tr>
<td>Diaphragm in the actuator defective</td>
<td></td>
<td>Contact SAMSON's After-sales Service department.</td>
</tr>
<tr>
<td>Actuator stem does not stroke through its complete travel range.</td>
<td>Travel stop active</td>
<td>See 'Adjusting the travel stop' in the 'Start-up' section.</td>
</tr>
<tr>
<td></td>
<td>Insufficient signal pressure</td>
<td>Check the signal pressure. Check the signal pressure line for leakage.</td>
</tr>
<tr>
<td></td>
<td>Incorrect setting of valve accessories.</td>
<td>Check the actuator without valve accessories. Check the settings of the valve accessories.</td>
</tr>
</tbody>
</table>

Note

Contact our after-sales service for malfunctions not listed in the table.
8.2 Emergency action
The plant operator is responsible for emergency action to be taken in the plant.
9 Service and conversion

Note
- The product warranty becomes void if service or repair work not described in these instructions is performed without prior agreement by SAMSON’s After-sales Service.
- Only use original spare parts by SAMSON, which comply with the original specifications.

9.1 Periodic testing

Depending on the operating conditions, check the actuator at certain intervals to prevent possible failure before it can occur. Operators are responsible for drawing up an inspection and test plan.

Tip
Our after-sales service can support you in drawing up an inspection and test plan for your plant.

9.2 Service or conversion work

Noticed
Risk of actuator damage due to incorrect service or conversion work.
- Do not perform service and conversion work on your own.
- Contact SAMSON’s after-sales service for service or conversion work.

The actuators contain parts subject to wear which can be replaced after consulting our after-sales service.

The direction of action (and fail-safe action) of pneumatic actuators can be changed through conversion work after consulting our after-sales service. The fail-safe action is indicated on the nameplate by a symbol:

- Actuator stem extends
- Actuator stem retracts
10 Decommissioning

The work described in this section is only to be performed by personnel qualified for the assignment accordingly.

⚠️ DANGER
Risk of bursting due to incorrect opening of pressurized equipment or components.
Pneumatic actuators are pressure equipment that may burst when handled incorrectly. Flying projectile fragments or components can cause serious injury or even death.
Before working on the actuator:
- Depressurize all plant sections concerned and the actuator. Release any stored energy.

⚠️ WARNING
Risk of personal injury due to preloaded springs.
Actuators with preloaded springs are under tension. These actuators can be identified by several longer bolts with nuts protruding from the bottom diaphragm case. Actuators with considerably preloaded springs are also labeled correspondingly (see the 'Markings on the device' section).
- Only open the actuator following the instructions in this document. See 'Relieving the spring compression in the actuator' in the 'Removal' section.

⚠️ WARNING
Risk of personal injury due to exhaust air being vented.
The actuator is operated with air. As a result, air is vented during operation.
- Wear eye and hearing protection when working near the actuator.

⚠️ WARNING
Crush hazard arising from the moving actuator stem.
- Do not insert hands or finger into the yoke while the air supply is connected to the actuator.
- Before working on the actuator, disconnect and lock the pneumatic air supply as well as the control signal.
- Do not impede the movement of the actuator stem by inserting objects into the yoke.
- Before unblocking the actuator stem after it has become blocked (e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See 'Relieving the spring compression in the actuator' in the 'Removal' section.

To decommission the actuator for service work or before removing it from the valve, proceed as follows:

1. Put the control valve out of operation. See associated valve documentation.
2. Disconnect the pneumatic air supply to depressurize the actuator.
11 Removal

The work described in this section is only to be performed by personnel qualified for the assignment accordingly.

⚠️ DANGER

Risk of bursting due to incorrect opening of pressurized equipment or components.

Pneumatic actuators are pressure equipment that may burst when handled incorrectly. Flying projectile fragments or components can cause serious injury or even death.

Before working on the actuator:

- Depressurize all plant sections concerned and the actuator. Release any stored energy.

⚠️ WARNING

Risk of personal injury due to preloaded springs.

Actuators with preloaded springs are under tension. These actuators can be identified by several longer bolts with nuts protruding from the bottom diaphragm case. Actuators with considerably preloaded springs are also labeled correspondingly (see the 'Markings on the device' section).

- Only open the actuator following the instructions in this document. See 'Relieving the spring compression in the actuator' in the 'Removal' section.

⚠️ WARNING

Risk of personal injury due to exhaust air being vented.

The actuator is operated with air. As a result, air is vented during operation.

- Wear eye and hearing protection when working near the actuator.

⚠️ WARNING

Crush hazard arising from the moving actuator stem.

- Do not touch the actuator stem or insert hands or finger into the yoke while the air supply is connected to the actuator.
- Before working on the actuator, disconnect and lock the pneumatic air supply as well as the control signal.
- Do not impede the movement of the actuator stem by inserting objects into the yoke.
- Before unblocking the actuator stem after it has become blocked (e.g. due to seizing up after remaining in the same position for a long time), release any stored energy in the actuator (e.g. spring compression). See 'Relieving the spring compression in the actuator' in the 'Removal' section.

Before removing the valve, make sure the following conditions are met:

- The actuator is put out of operation (see the 'Decommissioning' section).
11.1 Removing the actuator from the valve

1. Undo the clamps of the stem connector (A26).
2. Loosen the stem connector nut (9) and lock nut (10).
3. Removing actuators with "stem extends" action with/without preloaded springs: to undo the ring nut (A8), apply approx. 50 % signal pressure to open the valve.
4. Unscrew the ring nut on the valve bonnet.
5. Disconnect the signal pressure again.
6. Separate the actuator from the valve by undoing the ring nut.
7. Fasten the lock nut and stem connector nut on the valve.

11.2 Relieving the spring compression in the actuator

The long clamping bolts with long clamping nuts and the short bolts with short nuts are arranged evenly around the circumference of the actuator housing to fasten the diaphragm cases together. They are only located on the bottom diaphragm case of single actuators, whereas they are additionally located on the intermediate case of tandem actuators. The springs in the actuator are compressed using the long clamping nuts and bolts.

To relieve the compression of the springs in the actuator, proceed as follows:

1. Unthread and remove the short nuts and bolts (including the washers) on the diaphragm cases.
2. Loosen the long clamping nuts and bolts on the diaphragm cases evenly in a crisscross pattern to gradually relieve the spring compression. Hold the bolt head stationary with a suitable tool and apply the torque to the nuts.
Fig. 11-1: Single actuator with clamping nuts and bolts

Fig. 11-2: Tandem actuator with clamping nuts and bolts

A1 Top diaphragm case
A2 Bottom diaphragm case
A4 Diaphragm
A20 Hex bolt
A21 Hex nut
A22 Hex bolt (preloading)
A23 Hex nut (preloading)
A25 Shim
A80 Diaphragm case (tandem actuator)
12 Repairs

If the actuator does not function properly according to how it was originally sized or does not function at all, it is defective and must be repaired or exchanged.

⚠️ NOTICE

Risk of actuator damage due to incorrect repair work.

- Do not perform any repair work on your own.
- Contact SAMSON's After-sales Service for repair work.

12.1 Returning devices to SAMSON

Defective devices can be returned to SAMSON for repair.

Proceed as follows to return devices:

1. Exceptions apply concerning some special device models at www.samson.de > Service & Support > After-sales Service.

2. Send an e-mail to retouren@samson.de to register the return shipment including the following information:
 - Type
 - Article no.
 - Configuration ID
 - Original order
 - Completed Declaration on Contamination, which can be downloaded from our website at www.samson.de > Service & Support > After-sales Service.

After checking your registration, we will send you a return merchandise authorization (RMA).

3. Attach the RMA (together with the Declaration on Decontamination) to the outside of your shipment so that the documents are clearly visible.

4. Send the shipment to the address given on the RMA.

ℹ️ Note

Further information on returned devices and how they are handled can be found at www.samson.de > Service & Support > After-sales Service.
13 Disposal

➢ Observe local, national and international refuse regulations.

➢ Do not dispose of components, lubricants and hazardous substances together with your household waste.
14 Certificates

The declaration of incorporation in compliance with Machinery Directive 2006/42/EC for the Type 3271 Pneumatic Actuator with 1400-120 cm², 2800 cm² and 2 x 2800 cm² actuator areas is provided on the next page.
DECLARATION OF INCORPORATION

TRANSLATION

Declaration of Incorporation in Compliance with Machinery Directive 2006/42/EC

For the following products:
Type 3271 and Type 3277 Actuators

We certify that the Type 3271 and Type 3277 Actuators are partly completed machinery as defined in the Machinery Directive 2006/42/EC and that the safety requirements stipulated in Annex I, 1.1.2, 1.1.3, 1.1.5, 1.3.2, 1.3.4 and 1.3.7 are observed. The relevant technical documentation described in Annex VII, part B has been compiled.

Products we supply must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of the Machinery Directive 2006/42/EC.

Operators are obliged to install the products observing the accepted industry codes and practices (good engineering practice) as well as the mounting and operating instructions. Operators must take appropriate precautions to prevent hazards that could be caused by the signal pressure and moving parts in/on the actuator.

The permissible limits of application and mounting instructions for the products are specified in the associated data sheets as well as the mounting and operating instructions; the documents are available in electronic form on the Internet at www.samson.de.

For product descriptions of the actuators, refer to:
- Types 3271 and 3277 Actuators: Mounting and Operating Instructions EB 8310-X

Referenced technical standards and/or specifications:
- VCI, VDMA, VGB: "Leitfaden Maschinennrichtlinie (2006/42/EG) – Bedeutung für Armaturen, Mai 2018" [German only]
- VCI, VDMA, VGB: "Zusatzdokument zum Leitfaden Maschinennrichtlinie (2006/42/EG) – Bedeutung für Armaturen vom Mai 2018" [German only], based on DIN EN ISO 12100:2011-03

Comments:
- See mounting and operating instructions for residual hazards.
- Also observe the referenced documents listed in the mounting and operating instructions.

Persons authorized to compile the technical file:

SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany
Frankfurt am Main, 1 October 2019

Dr. Michael Haß
Director
Product Management and Technical Sales

Peter Scheermesser
Director
Product Upgrades and ETO Valves and Actuators

Revision no. 00

Classification: Public · SAMSON AKTIENGESELLSCHAFT · Weismüllerstraße 3 · 60314 Frankfurt am Main, Germany

Page 1 of 1
15 Annex

15.1 Tightening torques, lubricants and tools

▶ AB 0100 for tools, tightening torques and lubricants

15.2 Spare parts

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top diaphragm case</td>
<td>73</td>
<td>Cover</td>
</tr>
<tr>
<td>2</td>
<td>Bottom diaphragm case</td>
<td>74</td>
<td>Hex nut</td>
</tr>
<tr>
<td>4</td>
<td>Diaphragm</td>
<td>75</td>
<td>Top diaphragm case</td>
</tr>
<tr>
<td>5</td>
<td>Diaphragm plate</td>
<td>76</td>
<td>Radial shaft seal</td>
</tr>
<tr>
<td>7</td>
<td>Actuator stem</td>
<td>77</td>
<td>Dry bearing</td>
</tr>
<tr>
<td>8</td>
<td>Ring nut</td>
<td>80</td>
<td>Diaphragm case (tandem actuator)</td>
</tr>
<tr>
<td>10</td>
<td>Spring (external)</td>
<td>81</td>
<td>Actuator stem</td>
</tr>
<tr>
<td>11</td>
<td>Spring (internal)</td>
<td>82</td>
<td>Hex nut</td>
</tr>
<tr>
<td>16</td>
<td>Vent plug</td>
<td>83</td>
<td>Hex nut</td>
</tr>
<tr>
<td>17</td>
<td>O-ring</td>
<td>84</td>
<td>Washer</td>
</tr>
<tr>
<td>18</td>
<td>Screw fitting</td>
<td>87</td>
<td>Spacer</td>
</tr>
<tr>
<td>20</td>
<td>Hex bolt</td>
<td>88</td>
<td>Guide stem (anti-rotation fixture)</td>
</tr>
<tr>
<td>21</td>
<td>Hex nut</td>
<td>89</td>
<td>Bushing</td>
</tr>
<tr>
<td>22</td>
<td>Hex bolt (preloading)</td>
<td>95</td>
<td>O-ring</td>
</tr>
<tr>
<td>23</td>
<td>Hex nut (preloading)</td>
<td>96</td>
<td>Cap screw</td>
</tr>
<tr>
<td>24</td>
<td>Screw plug</td>
<td>97</td>
<td>Slotted round nut</td>
</tr>
<tr>
<td>25</td>
<td>Washer</td>
<td>100</td>
<td>Nameplate</td>
</tr>
<tr>
<td>26/27</td>
<td>Stem connector clamps</td>
<td>101</td>
<td>Label (preloading)</td>
</tr>
<tr>
<td>29</td>
<td>Hex screw</td>
<td>120</td>
<td>Bracket</td>
</tr>
<tr>
<td>35</td>
<td>Compressor</td>
<td>121</td>
<td>Ring bolt</td>
</tr>
<tr>
<td>36</td>
<td>Distance pipe</td>
<td>122</td>
<td>Hex nut</td>
</tr>
<tr>
<td>40</td>
<td>Radial shaft seal</td>
<td>123</td>
<td>Threaded bushing</td>
</tr>
<tr>
<td>41</td>
<td>Wiper ring</td>
<td>124</td>
<td>Hex nut (lock nut)</td>
</tr>
<tr>
<td>42</td>
<td>Dry bearing</td>
<td>126</td>
<td>Plain bearing</td>
</tr>
<tr>
<td>50</td>
<td>Actuator stem</td>
<td>127</td>
<td>Guide tube (anti-rotation fixture)</td>
</tr>
<tr>
<td>72</td>
<td>Hex nut</td>
<td>300</td>
<td>Plastic stopper</td>
</tr>
</tbody>
</table>
Actuator (1400-120 cm²)
2800 cm² actuator
Tandem actuator (2 x 2800 cm²)
15.3 After-sales service

Contact SAMSON's After-sales Service for support concerning service or repair work or when malfunctions or defects arise.

E-mail address

You can reach our after-sales service at aftersalesservice@samson.de.

Addresses of SAMSON AG and its subsidiaries

The addresses of SAMSON AG, its subsidiaries, representatives and service facilities worldwide can be found on our website (www.samson.de) or in all SAMSON product catalogs.

Required specifications

Please submit the following details:

- Order number and position number in the order
- Type, model number, actuator area, travel and bench range (e.g. 0.2 to 1 bar) or the operating range of the actuator
- Type designation of mounted valve (if applicable)
- Installation drawing