Series 3730 Type 3730-4 Electropneumatic Positioner

with PROFIBUS-PA communication

Mounting and Operating Instructions

EB 8384-4 EN (1300-1613)

Firmware version K 1.17/R 1.46 Edition July 2017

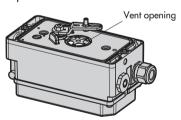
Contents	I	Page
1	Design and principle of operation	
1.1	Additional equipment	. 10
1.2	Communication	. 10
1.3	Technical data	. 11
2	Attachment to the control valve – Mounting parts and accessories	
2.1	Direct attachment	
2.1.1	Type 3277-5 Actuator	
2.1.2	Type 3277 Actuator	. 22
2.2	Attachment according to IEC 60534-6	
2.3	Attachment according to VDI/VDE 3847	
2.4	Attachment to Type 3510 Micro-flow Valve	. 32
2.5	Attachment to rotary actuators	
2.5.1	Heavy-duty version	
2.6	Reversing amplifier for double-acting actuators	. 38
2.6.1	Reversing amplifier (1079-1118 or 1079-1119)	. 38
2.7	Attaching an external position sensor	. 40
2.7.1	Mounting the position sensor with direct attachment	. 40
2.7.2	Mounting the position sensor with attachment according to IEC 60534-6	42
2.7.3	Mounting the position sensor to Type 3510 Micro-flow Valve	
2.7.4	Mounting the position sensor to rotary actuators	
2.8	Attaching positioners with stainless steel housings	. 46
2.9	Air purging function for single-acting actuators	. 46
3	Connections	. 48
3.1	Pneumatic connections	
3.1.1	Signal pressure gauges	. 48
3.1.2	Supply pressure	
3.2	Electrical connections	. 50
3.2.1	Establishing communication	. 52
4	Operation	. 54
4.1	Operator controls and readings	. 54
4.2	Enabling and selecting parameters	. 56
4.3	Operating modes	. 57
4.3.1	Automatic and manual operating modes	
4.3.2	SAFE – Fail-safe position	
5	Start-up and settings	. 58
5.1	Defining the valve closed position	
5.2	Setting the volume restriction Q	
	•	

Contents

5.3	Adapting the display
5.4	Limiting the signal pressure
5.5	Checking the operating range of the positioner 60
5.6	Initialization
5.6.1	Initialization modes
5.7	Fault/failure
5.8	Zero calibration
5.9	Reset to default values
5.10	Start-up via local interface (SSP)
5.11	Setting the bus address
6	Status and diagnostic alarms
6.1	Standard EXPERT diagnostics
6.2	Extended EXPERT+ diagnostics
6.3	Classification of the status alarms and the condensed status
7	Adjusting the limit switch
8	Quick start-up guide
8.1	Mounting
8.2	Start-up
8.3	Initialization
8.3.1	Simplest method (<i>MAX</i>)
8.3.2	Precise method (<i>NOM</i>)
8.3.3	Manual method (MAN)
9	Retrofitting an inductive limit switch
10	Maintenance
11	Servicing explosion- protected devices
12	Firmware update (serial interface)
13	Maintenance, calibration and work on equipment
14	PROFIBUS-PA communication
14.1	Profile
14.2	Cyclic data exchange
14.2.1	GSD files
14.2.2	Data exchange
14.2.3	Integration for PCS7 control system
14.2.4	General instructions to start up the positioner
14.3	CHECKBACK – Device status
14.4	Status coding of measured values
14.4.1	Status alarm according to Profile 3.01

14.4.2	Status alarms according to Profile 3.01 Condensed Status 100
14.5	Diagnostics with PROFIBUS-DP protocol
14.6	Acyclic data exchange
15	Appendix
15.1	Code list
15.2	Parameter list
16	Dimensions in mm
16.1	Fixing levels according to VDI/VDE 3848 (September 2010) 187
	Test certificates 188

Modifications to positioner firmware compared to the previous version


Modifications	s to positioner firmware compared to the previous version
Communicati	on
Firmware	Modification
K 1.01	Internal modifications
K 1.10	The FEATURE_SELECT parameter allows you to set whether an active diagnostic function is to be reported by a GOOD_FUNCTION_CHECK or a BAD_FUNCTION_CHECK (see page 144)
K 1.11	 More trigger conditions in the data logger (see page 142) More additional functions (FEATURE_SELECT) (see page 144)
	The limits of the discrete valve position (POS_D_LIMIT_LOW, POS_D_LIMIT_UP) can now be defined as required (see page 86)
K 1.12	Resetting the identification parameters resets all the parameters saved in the controller. The parameters saved in the controller are, however, not reset when just the start-up parameters are reset (see page 134).
K 1.13	Internal modifications
K 1.15	Feature of ID number adaptation acc. to PROFIBUS PA Profile 3.02 added. It allows a Type 3785 Positioner (Profile 2.0 and Profile 3.0) to be directly replaced with a Type 3730-4 Positioner in the compatability mode (see page 87).
K 1.16	The function to suppress extended diagnostic messages allows messages for the PROFIBUS diagnosis protocol to be suppressed. The messages are still included in the condensed state according to their classification. The parameter to suppress the diagnositic messages exists in the following integrations: DD: 2.2.007 TROVIS-VIEW: 3.60.005 (device module) and higher DTM: 1.3.0.1
K 1.17	The versions K1.12 to K1.16 do not save a reference variable received in acyclic data exchange as the valid value for the fail-safe action 'Last valid setpoint is used'. In the affected modules for data exchange, the polling for a valid reference variable has been changed to GOOD_NON_SPECIFIC.
Communicati	on
Firmware	Modification
R 1.43 to R 1.46	Internal modifications

General safety instructions

- The positioner is to be mounted, started up or operated only by trained and experienced personnel familiar with the product.

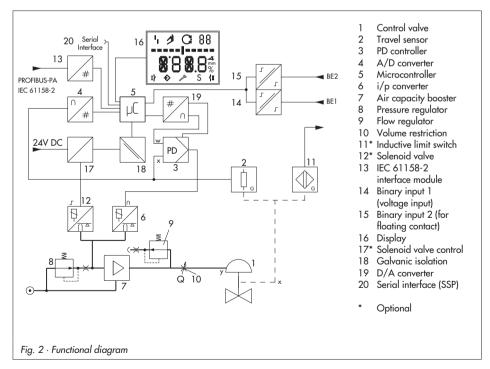
 According to these Mounting and Operating Instructions, trained personnel refers to individuals who are able to judge the work they are assigned to and recognize possible dangers due to their specialized training, their knowledge and experience as well as their knowledge of the applicable standards.
- Explosion-protected versions of this positioner may only be operated by personnel who have undergone special training or instructions or who are authorized to work on explosion-protected devices in hazardous areas. Refer to section 11 on Servicing explosion-protected versions.
- Any hazards that could be caused by the process medium, the operating pressure, the signal pressure or by moving parts of the control valve are to be prevented by means of the appropriate measures.
- If inadmissible motions or forces are produced in the actuator as a result of the supply pressure level, it must be restricted by means of a suitable supply pressure reducing station.
- Do not operate the positioner with the back of the positioner/vent opening facing upwards. The vent opening must not be sealed or restricted when the positioner is installed on site.

- Proper shipping and appropriate storage are assumed.
- Do not ground electric welding equipment near to the positioner.

Note: The device with a CE marking fulfills the requirements of the Directive 2014/30/EU and, depending on the version, the requirements of the Directive 2014/34/EU. The EU declarations of conformity can be found at the back of these instructions.

Article code

Positioner	Туре	3730-4	x x	×	0 >	0	x x	1 >	0	0 x	0	хх
With LCD and autotune, PROFIBUS	-PA											
Explosion protection												
None			Ó									
ATEX: II 2G Ex ia IIC T6 Gb; II 2D E	Ex ia IIIC T80°C Db		1									
CSA/FM: Ex ia IIC T6, Class I, II, Div.1, Group Class I, Div.2, Groups A-D; Class II, Class I, Zone 0 AEx ia IIC; Class I, II, Class I, Div.2, Groups A-D; Class II,	Div.1, Groups E-G/ III, Div.1, Groups A-G;	6;	3									
ATEX: II 2D Ex tb IIIC T80°C Db			5									
ATEX: II 3G Ex nA II T6; II 3G Ex ic	IIC T6; II 3D Ex tc IIIC T80°C	P66	8									
Additional equipment												
Inductive limit switch	Without SJ2-SN (NC contact)		1)								
Solenoid valve	Without With, 24 V DC			0								
External position sensor	Without With		C)	1		0	()			
Binary input	Without Floating contact				()	0					
Diagnostics												
EXPERT (standard)							1					
EXPERT+ (extended diagnostics)							2					
Housing material			Ш									
Aluminum (standard)								()			
Stainless steel 1.4581				4	()	╙	1	_			
Special application												
None										C)	
Postioner compatible with paint				١						1		
Exhaust connection with 1/4-18 NPT	thread, back of positioner hou	using sealed	C	0 (()	0			2	2	
Special version												1 1
None			I								0	0 0
NEPSI: Ex ia IIC T6			1								0	0 9
NEPSI: Ex nA II T6; Ex nL IIC T6			8								0	1 0
IECEx: Ex iα IIC T6			1								0	1 2
EAC Ex: 1Ex ia IIC T6; Ex tb IIIC T8	0°C Db X, IP66		1								0	1 4
EAC Ex: 2Ex nA ic IIC T6/T5/T4 G	c X; Ex tc IIIC T80°C Db X, IP6	6	8								0	2 0


Design and principle of operation

The electropneumatic positioner is attached to pneumatic control valves. It is used to assign the valve stem position (controlled variable x) to the control signal (reference variable w). The input signal received from a control system is compared to the travel or rotational angle of the control valve, and a pneumatic signal pressure (output variable y) is produced.

The positioner consists of a travel sensor system proportional to resistance, an analog i/p converter with a downstream booster and the electronics unit with microcontroller.

When a deviation occurs, the actuator is pressurized or vented. If required, the changes in the signal pressure can be slowed down by a connectable Q restriction. The signal pressure supplied to the actuator can be limited by software or on site to 1.4, 2.4 or 3.7 bar.

A constant air stream to the atmosphere is created by the flow regulator (9) with a fixed set point. The air stream is used to purge the inside of the housing as well as to optimize the air capacity booster. The i/p module (6) is supplied with a constant upstream pressure by the pressure regulator (8) to make it independent of the supply air pressure.

The positioner communicates and is powered using IEC 61158-2 transmission technology conforming to PROFIBUS-PA specification

As a standard feature, the positioner comes with a binary input for DC voltage signals to signalize process information over the PROFIBUS-PA.

1.1 Additional equipment

Version with solenoid valve

If the operating voltage for the solenoid valve (12) fails, the supply pressure for the booster is vented to the atmosphere. As a result, the actuator is vented and the valve moves to the fail-safe position.

NOTICE

In manual mode (MAN), the manual set point is also reset to 0 %. A different manual set point must be entered again (Code 1).

Version with inductive limit switch

The rotary shaft of the positioner carries an adjustable tag which actuates the installed proximity switch.

Version with binary contact

All positioners are fitted with a binary input for DC voltage signals over which process information can be issued over the PROFIBUS-PA network.

Another optional binary input is an active input powered by the positioner to connect a floating contact. Its switching condition can also be issued over the PROFIBUS-PA network.

Version with external position sensor

In this version, only the sensor is mounted to the control valve. The positioner is located separately from the valve.

The connection of x and y signals to the valve is established via cable and piping for air (only without inductive limit switch).

1.2 Communication

The positioner is completely controlled over the digital signal transmission implemented complying with PROFIBUS-PA Profile B as per DIN EN 50170 and DIN 19245 Part 4.

Data are transmitted as bit-synchronous current modulation at a rate of 31.25 kbit/s over twisted-pair cables conforming to IEC 61158-2.

Usually, the positioner settings are made on a computer which is connected to one or more positioners linked over a segment coupler to the PROFIBUS segment of the computer.

Configuration using TROVIS-VIEW software

The positioner can be configured using TROVIS-VIEW Configuration and Operator Interface software.

The positioner is equipped with an additional digital SERIAL INTERFACE to allow a computer to be connected over an adapter cable from the RS-232 interface of the computer to the positioner.

The TROVIS-VIEW software enables the user to easily set parameters in the positioner and view process parameters online.

Note: The TROVIS-VIEW software is a common operator interface for various smart SAMSON devices. The software together with a device-specific module allow the configuration and parameterization of the device. The device-specific module for Type 3730-4 can be downloaded free of charge from the SAMSON website (Services > Software > TROVIS-VIEW).

Additional information on TROVIS-VIEW (e.g. system requirements) can found on the SAMSON website and in the Data Sheet T 6661 EN.

Technical data 1.3

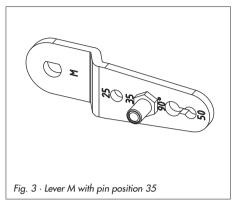
Type 3730-4 Positioner (the listed technical data may be restricted by the limits specified in the test certificate for explosion-protected devices)						
Rated travel, adjustable	Direct attachment to Type 3277: 3.6 to 30 mm Attachment acc. to IEC 60534-6 (NAMUR): 3.6 to 300 mm Attachment to rotary actuators (VDI/VDE 3865): 24° to 100°					
Travel range	Adjustable within the initialized travel/angle of rotation; travel can be restricted to ½ at the maximum					
Bus connection Fieldbus interface acc. to IEC 61158-2 bus-powered Field device acc. to FISCO (Fieldbus Intrinsically Safe Concept)						
Communication						
Fieldbus	Data transmission as in PROFIBUS-PA specification, acc. to IEC 61158 and IEC 61784					
	Certified DTM acc. to FDT Specification 1.2 for integration of the device into suitable FDT framework applications · Other integrations, e.g. EDD in SIMATIC PDM					
Local	Over SAMSON SSP interface and serial interface adapter					
Software requirements	SAMSON TROVIS-VIEW with database module 3730-4					
Perm. operating voltage	9 to 32 V DC, power supply over bus line The limits in test certificate additionally apply for explosion-protected devices.					
Max. operating current	15 mA					
Add. current in case of fault	0 mA					
Supply air	Supply pressure from 1.4 to 7 bar (20 to 105 psi)					
Air quality acc. to ISO 8573-1 Edition 2001:	Max. particle size and density: Class 4; Oil content: Class 3; Moisture and water: Class 3; Pressure dew point: At least 10 K beneath the lowest amb. temp. to be expected					

Design and principle of operation

Type 3730-4 Positioner (the liste explosion-protected devices)	d technical data may be restricted by the limits specified in the test certificate for				
Characteristic	Linear/equal percentage/reverse equal percentage \cdot User-defined (over operating software and communication) \cdot Butterfly valve linear/equal percentage \cdot Rotary plug valve linear/equal percentage \cdot Segmented ball valve linear/equal percentage Deviation from terminal-based conformity $\leq 1~\%$				
Hysteresis	≤0.3 %				
Sensitivity	≤0.1 %				
Direction of action	Reversible				
Air consumption	Independent from supply pressure < 110 l _n /h				
Air output capacity To the actuator with air To the vent actuator	At $\Delta p = 6$ bar: $\geq 8.5 \text{ m}_n^3/\text{h}$, at $\Delta p = 1.4$ bar: $3.0 \text{ m}_n^3/\text{h}$ $K_{Vmax \{20 ^{\circ}C\}} = 0.09$ at $\Delta p = 6$ bar: $\leq 14.0 \text{ m}_n^3/\text{h}$, at $\Delta p = 1.4$ bar: $4.5 \text{ m}_n^3/\text{h}$ $K_{Vmax \{20 ^{\circ}C\}} = 0.15$				
Permissible ambient temperature	 -20 to +80 °C for all versions -45 to +80 °C with metal cable gland The listed temperature limits may be restricted by the limits specified in the test certificate for explosion-protected devices. 				
Influ- Temperature	≤ 0.15 %/10 K				
ences Supply air	None				
Vibration	$\leq 0.25\%$ up to 2000 Hz and 4 g acc. to IEC 770				
Electromagnetic compatibility	Complying with requirements of EN 61000-6-2, EN 61000-6-3, EN 61326-1 and NAMUR Recommendation NE 21				
Electrical connection	One M20 x 1.5 cable gland, for clamping range 6 to 12 mm · Second additional threaded M20 x 1.5 hole · Screw terminals for 0.2 to 2.5 mm² wire cross-section				
Degree of protection	IP 66/NEMA 4X				
Use in safety-instrumented systems (SIL)	Observing the requirements of IEC 61508, the systematic capability of the pilot valve for emergency venting as a component in safety-instrumented systems is given.				
	Use is possible on observing the requirements of IEC 61511 and the required hardware fault tolerance in safety-instrumented systems up to SIL 2 (single device/HFT = 0) and SIL 3 (redundant configuration/HFT = 1).				
Binary input 1					
Input	0 to 30 V DC, reverse polarity protection, static destruction limit 40 V/5.8 mA, current consumption 3.5 mA at 24 V, galvanically isolated				
Signal	Signal '1' at Ue > 5 V · Signal '0' at Ue < 3 V				
Materials					
Housing	Die-cast aluminum EN-AC-AlSi12(Fe) (EN AC-44300) acc. to DIN EN 1706 Chromated and powder paint coated · Special version: stainless steel 1.4581				
External parts	Stainless steel 1.4571 and 1.4301				
Cable gland	Black polyamide, M20x1.5				
Weight	Approx. 1.0 kg · Stainless steel version: 2.2 kg				
Compliance	C€ [H[

Options for Type 3730-4 Positioner with PROFIBUS-PA communication							
Binary contact 2 for floating contact							
Switching input $R < 100 \Omega$, contact load 100 mA, static destruction limit 20 V/5.8 mA, galvanically isolated							
Solenoid valve	Approval acc. to IEC 61508/SIL						
Input	24 V DC, max. 40 V, reverse polarity protection, static destruction limit 40 V						
	Current consumption I = $\frac{U - 5.7 \text{ V}}{3840 \Omega}$ (corresponding to 4.8 mA at 24 V/114 mW)						
Signal	Signal '0' no pick-up ≤ 12 V · Signal '1' safe pick-up >19 V						
Service life	>5 x 10 ⁶ switching cycles						
K _V coefficient	0.15						
Use in safety-instrumented systems (SIL)	Same as positioner pneumatics						
Inductive limit switch	For connection to switching amplifier acc. to EN 60947-5-6						
SJ2-SN proximity switch	Measuring plate not detected: ≥ 3 mA; Measuring plate detected: ≤ 1 mA						
External position sensor							
Travel	Same as Type 3730 Positioner						
Cable	10 m with M12x1 connector, designed for continuous flexing, flame retardant acc. to VDE 0472, resistant to oils, lubricants and coolants as well as other corrosive media						
Perm. ambient temperature	perature -40 to +90 °C with a fixed connection between positioner and position sensor						
Vibration immunity Up to 10 g in the range between 10 and 2000 Hz							
Degree of protection	IP 67						

Summary of explosion-protection certificates


Type 3730	Certification			Type of protection/comments		
-4	CCoE	CCoE Number A P HQ MH 104 1343 Date 2013-04-19 Valid until 2018-04-18		Ex ia IIC T6		
-4	STCC	Number Valid until	972 2017-10-01	0Ex ia IIC T6X; 2Ex s II T6 X		
-41	⟨Ex⟩	Number Date	PTB 04 ATEX 2109 2017-05-11	II 2G Ex ia IIC T6 Gb; II 2D Ex ia IIIC T80°C Db		

Type 3730	Certification			Type of protection/comments
-41	EHC Ex	Number Date Valid until	RU-C-DE. 08.B.00697 2014-12-15 2019-12-14	1Ex ia IIC T6; Ex tb IIIC T80°C Db X, IP66
-41	IECEx	Number Date	PTB 06.0054 2006-11-02	Ex ia IIC T6
-41	NEPSI	Number Date Valid until	GYJ111267 2016-01-24 2023-01-23	Ex ia IIC T6
-43	CSA	Number Date	1675787 2017-05-24	Ex ia IIC T6, Class I, II, Div.1, Groups A-G; Ex nA II T6, Ex nL IIC T6; Class I, Div.2, Groups A-D; Class II, Div.1, Groups E-G
-43	FM	Number Date	3023605 2006-03-15	Class I, Zone O AEx ia IIC; Class I, II, III, Div.1, Groups A-G; Class I, Div.2, Groups A-D; Class II, Div.2, Groups F, G
-47	€x>	Number Date	PTB 04 ATEX 2109 2017-05-11	II 2D Ex th IIIC T80°C Db
-48	⟨£x⟩	Number Date	PTB 05 ATEX 2010 X 2006-07-13	II 3G Ex nA II T6; II 3G Ex ic IIC T6; II 3D Ex tc IIIC T80°C IP66
-48	EH[Ex	Number Date Valid until	RU-C-DE. 08.B.00697 2014-12-15 2019-12-14	2Ex nA ic IIC T6/T5//TT4 Gc X; Ex tc IIIC T80°C Db X, IP66
-48	NEPSI	Number Date Valid until	GYJ111268 2016-01-24 2023-23-01	Ex nA II T6; Ex nL IIC T6

The positioner can be attached either directly to a SAMSON Type 3277 Actuator or according to IEC 60534-6 (NAMUR) to control valves with cast yokes or rod-type yokes as well as to rotary actuators according to VDI/VDE 3845.

For attachment to the various actuators, corresponding mounting parts and accessories are required. These are listed with their order numbers in Tables 1 to 6.

On attaching the positioner, it is important to observe the assignment between lever and pin position according to the travels listed in the travel tables.

The tables show the maximum adjustment range at the positioner. The travel that can be implemented at the valve is restricted by the pin position used and additionally by the actuator spring compression required.

The positioner is standard equipped with the lever M (pin position 35).

Note: If the standard mounted lever M (pin position 35) is replaced, the newly mounted lever must be moved once all the way as far as it will go in both directions to adapt it to the internal measuring lever.

Travel table for direct attachment to Type 3277 Actuator									
Type 3277-5	Actuator size cm ²	Rated travel mm		ge at positioner avel Max.	Required lever	Assigned pin position			
and 3277	120	7.5	5.0	25	М	25			
Actuators	120/175/240/350	15	7.0	35.0	М	35			
	355/700/750	30	10.0	50.0	М	50			

Travel table for attachment according to IEC 60534-6 (NAMUR)							
	SAMSON valves		Other valve	es/actuators	Required	Assigned	
	cm ²	Rated travel mm	Min. Tro	avel Max.	lever	pin position	
	60 and 120 with Type 3510 Valve	7.5	3.6 18.0		S	17	
	120	7.5	5.0 25.0		M	25	
Type 3271	120/240/175/350	15	7.0	25.0	М	25	
Actuator	700/750	7.5	7.0	35.0		35	
	355/700/750	15 and 30	10.0	50.0	М	50	
	1000/1400/2800	30	14.0	70.0	L	70	
	1000/1400/2800	60	20.0	100.0	L	100	
	1400/2800	120	40.0 200.0		XL	200	
See manufacturer's specifications		200	See manufacturer's specifications		XXL	300	
Rotary actua	ators	Oper	ning angle 24 to	100°	М	90°	

Table 1	Direct attachment to Type 3277-5 Actuator, see Fig. 4	Order no.			
	Standard version for actuators up to 120 cm ²	1400-7452			
Mounting parts	Version compatible with paint for actuators up to 120 c	:m²	1402-0940		
	Switchover plate old for Actuator Type 3277-5xxxxxx.	1400-6819			
	Switchover plate new for Actuator Type 3277-5xxxxxx.	1400-6822			
Accessories	Connecting plate new for Actuator Type 3277-5xxxxxx.	1400-6823			
for the	Connecting plate old for Actuator Type 3277-5xxxxxx.	1400-6820			
actuator	Connecting plate old for Actuator Type 3277-5xxxxxx.	1400-6821			
	Note: Only new switchover and connecting plates can be used with new actuators (Index 01). Old and new plates are not interchangeable.				
	Connecting plate (6)	G 1/4: 1400-7461 · 1/4 NPT: 1400-7462			
Accessories for the positioner	or pressure gauge bracket (7)	G 1/4: 1400-7458 · 1/4 NPT: 1400-7459			
	Pressure gauge mounting kit (8) up to max. 6 bar (output/supply)	Stainless steel/Brass: 1402-0938 Stainless steel/St. steel: 1402-0939			

Table 2 · Dire	Direct attachment to Type 3277 (Fig. 5)				
Mounting	Standard version for actuators with 175, 240, 350, 355, 700, 750 cm ²				1400-7453
parts	Version compatible with paint for actuators	with 175, 240), 350, 35	5, 700, 750 cm ²	1402-0941
		175 cm ²	Steel	G 1/4 / G 3/8	1402-0970
				1/4 NPT / 3/8 NPT	1402-0976
			Stainl. steel	G 1/4 / G 3/8	1402-0971
				1/4 NPT / 3/8 NPT	1402-0978
		240 cm ²	C1I	G 1/4 / G 3/8	1400-6444
			Steel	1/4 NPT / 3/8 NPT	1402-0911
			Stainl. steel	G 1/4 / G 3/8	1400-6445
				1/4 NPT / 3/8 NPT	1402-0912
			Steel	G 1/4 / G 3/8	1400-6446
		250 2		1/4 NPT / 3/8 NPT	1402-0913
	D : I : : : : : : : : : : : : : : : : :	350 cm ²	Stainl.	G 1/4 / G 3/8	1400-6447
	Required piping with screw fitting – for "Actuator stem retracts" – with air purging of the top diaphragm chamber		steel	1/4 NPT / 3/8 NPT	1402-0914
		355 cm ²	Steel	G 1/4 / G 3/8	1402-0972
				1/4 NPT / 3/8 NPT	1402-0979
Accessories			Stainl. steel	G 1/4 / G 3/8	1402-0973
				1/4 NPT / 3/8 NPT	1402-0980
		700 cm ²	Steel	G 1/4 / G 3/8	1400-6448
				1/4 NPT / 3/8 NPT	1402-0915
			Stainl. steel	G 1/4 / G 3/8	1400-6449
				1/4 NPT / 3/8 NPT	1402-0916
		750 cm ²	Steel	G 1/4 / G 3/8	1402-0974
				1/4 NPT / 3/8 NPT	1402-0981
			Stainl. steel	G 1/4 / G 3/8	1402-0975
				1/4 NPT / 3/8 NPT	1402-0982
	Connection block with seals and screw		G 1/4		1400-8819
			1/4 NPT		1400-8820
	Pressure gauge mounting kit (8) up to max. 6 bar (output/supply)		Steel/brass		1402-0938
			St. steel/st. steel		1402-0939

Table 3	Attachment to NAMUI according to IEC 6053	R ribs or control valves wi 34-6, see Fig. 6	th rod-type yokes (2	20 to 35 mm rod dia	meter)
Travel in r	mm Lever	For actuators			Order no.
7.5	S	Type 3271-5 Actuator Valve, see Fig. 10	Type 3271-5 Actuator with 60/120 cm ² on Type 3510 Valve, see Fig. 10		
5 to 50	Without (Lever M is mounted on basic model)	Actuators from other m 120 to 750 cm ²	Actuators from other manufacturers and Type 3271 with 120 to 750 cm ²		
14 to 100	L	Actuators from other m 1000 and 1400-60	Actuators from other manufacturers and Type 3271, versions 1000 and 1400-60		
40 to 200) XL		Actuators from other manufacturers and Type 3271, versions 1400-120 and 2800 cm² with 120 mm travel		
30 or 60	L	Type 3271, version 14 30/60 mm travel In conjunction with Typ 120 mm rated travel, c and two countersunk so	1400-7466		
	Mounting brackets for Emerson and Masoneilan linear actuators In addition, a mounting kit acc. to IEC 60534-6 is required depending on the travel. See row above.				1400-6771
	Connecting plate	G 1/4: 1400-7461 · 1/4 NPT : 1400-74		· 1/4 NPT : 1400-746	52
Accessories	or pressure gauge bro	icket (7)	G 1/4: 1400-7458 · 1/4 NPT: 1400-745		9
		Ing kit up to max. 6 bar St. steel/brass: 1402-0938 St. steel/st. steel: 1402-0939			
	Attachment according to VI 0-4xxxxxxxxX0x0070xx Ele	, ,	•	7 interface	Order no.
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Interface adapter		, 2., , 22 00		1402-0257
	-	Mounting kit for attachment to SAMSON Type 3277 with 175 to 750 cm ²			
		Mounting kit for attachment to SAMSON Type 3271 or non-SAMSON actuators			
	J J J J J J J J J J J J J J J J J J J	Connecting plate, including connection for air purging of actuator spring chamber		ISO 228/1-G 1/4	1402-0268
Mounting	Connecting plate, inclu			1/4-18 NPT	1402-0269
parts	9.			ISO 228/1-G 1/4	1402-0270
				1/4-18 NPT	1402-0271
	Travel pick-off for valve	Travel pick-off for valve travel up to 100 mm			
	Travel pick-off for 100	Travel pick-off for 100 to 200 mm valve travel (SAMSON Type 3271 only)			
Table 5 ·	Attachment to rotary actua	tors (Figs. 11 and 12)			
	VDI/VDE 3845 (September		16.1 for details		
Moun- ting parts	Actuator surface area corresponds to level 1				
	Size AA1 to AA4, version with CrNiMo steel bracket				1400-7448
	Size AA1 to AA4, heavy-duty version				1400-9244
	Size AA5, heavy-duty version (e.g. Air Torque 10 000)				1400-9542
	Bracket surface area corresponds to level 2, heavy-duty version				1400-9526

Table 5 · Attachm	ent to rotary actuators (Figs. 11 and 12)		
	Attachment for rotary actuators up to 180° opening angle, fixing level 2		
	Attachment for SAMSON Type 3278 with 160/32	1400-7614	
Mounting parts	Attachment for Camflex II		
Mooning paris	SAMSON Type 3278 with 160 cm ² and VETEC Types \$160, R and M, heavy-duty version		
	SAMSON Type 3278 with 320 cm² and for VETEC Type S320, heavy-duty version		
	C : 1.70	G 1/4	1400-7461
	Connecting plate (6)	1/4 NPT	1400-7462
	5 1 1 . (=)	G 1/4	1400-7458
Accessories	Pressure gauge bracket (7)	1/4 NPT	1400-7459
	Pressure gauge mounting kit up to max. 6 bar	St. steel/brass	1402-0938
	(output/supply)	St. steel/st. steel	1402-0939

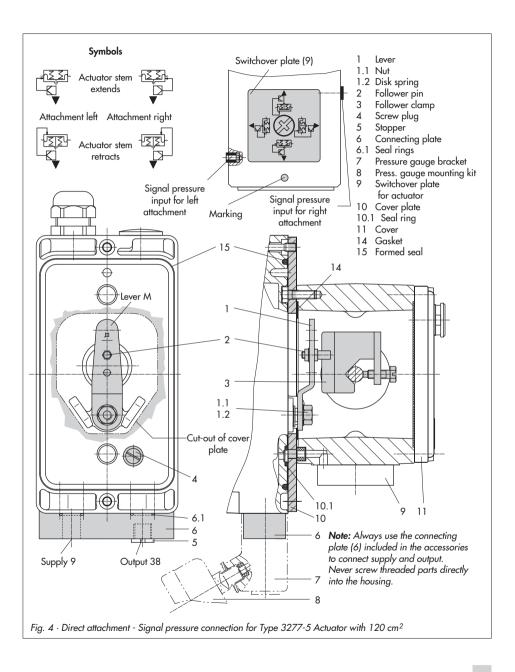
Table 6 · General accessories					
	Pneumatic reversing amplifier for double-acting actuators			Type 3710	
		Black plastic (6 to 12 mm	8808-1011		
	Cable gland M20 x 1.5	Blue plastic (6 to 12 mm c	8808-1012		
		Nickel-plated brass (6 to	1890-4875		
		Nickel-plated brass (10 to	1922-8395		
		Stainless steel 1.4305 (8	8808-0160		
		EMC cable gland M20 x	8808-0143		
	Adapter M20 x 1.5 to	Aluminum, powder paint coated		0310-2149	
Accessories	½ NPT	Stainless steel	1400-7114		
	Retrofit kit for inductive limit switch 1x SJ 2-SN			1400-7460	
	Cover plate with list of parameters and operating instructions		German/English (standard)	0190-5328	
	EXPERT+ activation code (specify the serial number of the positioner on ordering this option)			1400-9318	
	TROVIS-VIEW with device module 3730-4			1548111	
	Serial interface adapter (SAMSON SSP interface - RS-232 port on computer)			1400-7700	
	Isolated USB interface adapter (SAMSON SSP interface - USB port on computer) including TROVIS-VIEW CD-ROM			1400-9740	
	PROFIBUS round connector M12x1			1992-0202	

2.1 Direct attachment

Type 3277-5 Actuator 2.1.1

Refer to Table 1 on page 16 for the required mounting parts as well as the accessories with their order numbers. Note the travel table on page 15.

Actuator with 120 cm²


Depending on the type of positioner attachment, the signal pressure is routed either left or right of the yoke through a bore to the actuator diaphragm. Depending on the fail-safe action of the actuator "Actuator stem extends" or "Actuator stem retracts" (valve closes or opens if the supply air fails), the switchover plate (9) must first be attached to the actuator yoke. Align the switchover plate with the corresponding symbol for left or right attachment according to the marking (view looking onto the switchover plate).

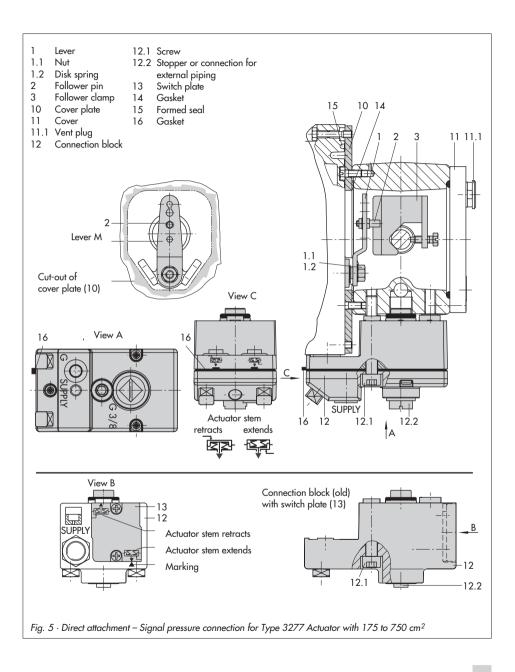
- 1. Mount connecting plate (6) or pressure gauge bracket (7) with pressure gauges onto the positioner, making sure both seal rings (6.1) are seated properly.
- 2. Remove screw plug (4) on the back of the positioner and close the signal pressure output "Output 38" on the connecting plate (6) or on the pressure gauge bracket (7) with the stopper (5) included in the accessories.
- 3. Place follower clamp (3) on the actuator stem, align and screw tight so that the mounting screw is located in the groove of the actuator stem.
- 4. Mount cover plate (10) with narrow side of the cut-out opening (Fig. 4, left) point-

- ing towards the signal pressure connection. Make sure that the bonded gasket (14) points towards the actuator yoke.
- 5. 15 mm travel: Keep the follower pin (2) at lever M (1) on the back of the positioner in the pin position 35 (delivered state).
 - 7.5 mm travel: Remove the follower pin (2) from the pin position 35, reposition it in the bore for pin position 25 and screw tiaht.
- 6. Insert formed seal (15) into the groove of the positioner housing and the seal ring (10.1) on the back of the housing.
- 7. Place positioner on the cover plate (10) in such a manner that the follower pin (2) rests on the top of the follower clamp (3). Adjust the lever (1) correspondingly and open the positioner cover to hold the positioner shaft in position at the cap or the switch (Fig. 23). The lever (1) must rest on the follower clamp with spring force. Mount the positioner on the cover plate (10) using the two fixing screws.

Note for all types of attachment except for direct attachment to Type 3277-5: The signal pressure output at the back must be sealed using the screw plug (4, order no. 0180-1254) and the associated O-ring (order no. 0520-0412).

8. Mount cover (11) on the other side. Make sure that the vent plug points downwards when the control valve is installed to allow any condensed water that collects to drain off.

2.1.2 Type 3277 Actuator


Refer to Table 2 on page 17 or the required mounting parts as well as the accessories with their order numbers. Note the travel table on page 15.

Actuators with 175 to 750 cm²

Mount the positioner on the yoke as shown in Fig. 5. The signal pressure is routed to the actuator over the connection block (12), for actuators with fail-safe action "Actuator stem extends" internally through a bore in the valve yoke and for "Actuator stem retracts" through external piping.

- 1. Place follower clamp (3) on the actuator stem, align and screw tight so that the mounting screw is located in the groove of the actuator stem.
- 2. Mount cover plate (10) with narrow side of the cut-out opening (Fig. 5, on the left) pointing towards the signal pressure connection. Make sure that the bonded gasket (14) points towards the actuator yoke.
- 3. For actuators with 355, 700 or 750 cm², remove the follower pin (2) at lever M (1) on the back of the positioner from pin position 35, reposition it in the bore for pin position 50 and screw tight. For actuators 175 to 350 cm² with 15 mm travel, the follower pin (2) remains in pin position 35.
- 4. Insert formed seal (15) in the groove of the positioner housing.
- 5. Place positioner on the cover plate in such a manner that the follower pin (2) rests on the top of the follower clamp

- (3). Adjust the lever (1) correspondingly and open the positioner cover to hold the positioner shaft in position at the cap or the switch (Fig. 23). The lever (1) must rest on the follower clamp with spring force. Mount the positioner on the cover plate (10) using the two fixing screws.
- 6. Make sure that the tip of the aasket (16) projecting from the side of the connection block (12) is positioned above the actuator symbol that corresponds with the actuator with fail-safe action "actuator stem extends" or "actuator stem retracts." If necessary, remove the three fixing screws and the cover. Then reposition the gasket (16) turned by 180°. The previous version of the connection block (Fig. 5, bottom) requires the switch plate (13) to be turned such that the corresponding actuator symbol points to the marking.
- 7. Place the connection block (12) with the associated seal rings against the positioner and the actuator yoke. Screw it tight using the fixing screw (12.1). For actuators with fail-safe action "actuator stem retracts", additionally remove the stopper (12.2) and fit on the external signal pressure piping.
- 8. Mount cover (11) on the other side. Make sure that the vent plug points downwards when the control valve is installed to allow any condensed water that collects to drain off.

2.2 Attachment according to IEC 60534-6

The positioner is attached to the control valve with a NAMUR bracket (10).

Refer to Table 3 on page 18 for the required mounting parts as well as the accessories with their order numbers.

Note the travel table on page 15.

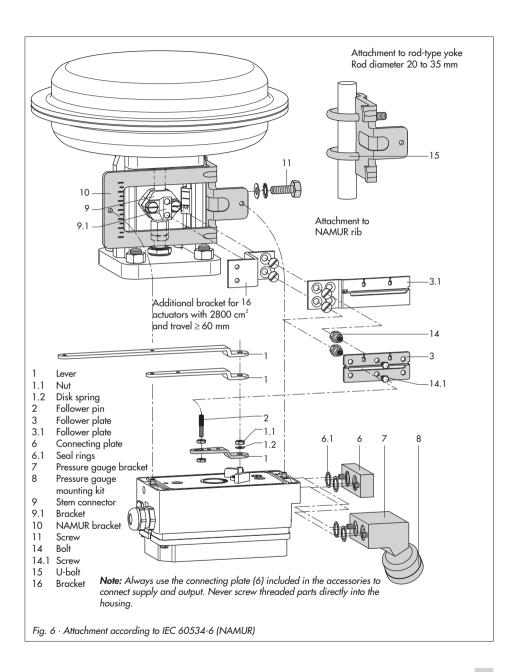
 Screw the two bolts (14) to the bracket (9.1) of the stem connector (9), place the follower plate (3) on top and use the screws (14.1) to tighten.

Actuator sizes 1400 cm² and 2800 cm² (120 mm travel):

For a travel of 60 mm or smaller, screw the longer follower plate (3.1) directly to the stem connector (9). For a travel exceeding 60 mm, mount the bracket (16) first and then the follower plate (3) to the bracket together with the bolts (14) and screws (14.1).

- 2. Mount NAMUR bracket (10) to the control valve as follows:
 - For attachment to the NAMUR rib, use an M8 screw (11), washer, and toothed lock washer directly in the yoke bore. For attachment to valves with rod-type yokes, use two U-bolts (15) around the yoke.
 - Alian the NAMUR bracket (10) in such a way that the slot of the follower plate (3) is centrally aligned with the NAMUR bracket at mid valve travel.
- 3. Mount connecting plate (6) or pressure gauge bracket (7) with pressure gauges (8) on the positioner, making sure both seal rings (6.1) are seated properly.

- 4. Select required lever size (1) M, L or XL and pin position according to the actuator size and valve travels listed in the table on page 15. Should you require a pin position other than position 35 with the standard installed lever M. or require a lever size L
- 5. Screw the follower pin (2) in the assigned lever bore (pin position) as listed in the table. Only use the longer follower pin (2) included in the mounting kit.


or XL, proceed as follows:

6. Place lever (1) on the positioner shaft and screw tight using the disk spring (1.2) and nut (1.1).

Note: If you have mounted a new lever (1), you must move it once all the way as far as it will go in both directions.

7. Place positioner on the NAMUR bracket in such a manner that the follower pin (2) rests in the slot of the follower plate (3, 3.1). Adjust the lever (1) correspond-

Screw the positioner to the NAMUR bracket using both its fixing screws.

2.3 Attachment according to **VDI/VDE 3847**

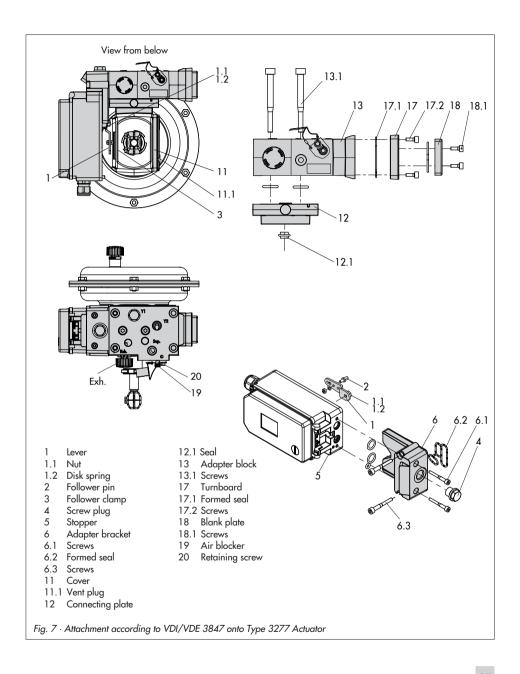
Type 3730-4xxxxxxxx0x0060xx and Type 3730-4xxxxxxxx0x0070xx Positioners with optional air purging of the actuator's spring chamber can be attached according to VDI/VDE 3847.

Type 3730-4xxxxxxxx0x0x0000xx Positioner without optional air purging of the actuator's spring chamber can be attached according to VDI/VDE 3847.

This type of attachment allows the positioners to be replaced quickly while the process is running by blocking the air in the actuator.

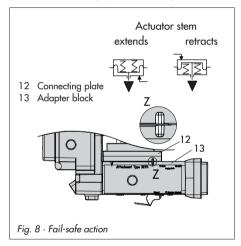
The signal pressure can be blocked in the actuator by unscrewing the red retaining screw (20) and then turning the air blocker (19) on the bottom of the adapter block.

Attachment to Type 3277 Actuator (see Fig. 7)


Refer to Table 4 on page 18 for the required mounting parts as well as the accessories.

Mount the positioner on the yoke as shown in Fig. 7. The signal pressure is routed to the actuator over the connecting plate (12), for actuators with fail-safe action "actuator stem extends" internally through a bore in the valve yoke and for "actuator stem retracts" through external piping.

Only the Y1 port is required for positioner attachment. The Y2 port can be used for air purging of the spring chamber.


- 1. Place follower clamp (3) on the actuator stem, align and screw tight so that the mounting screw is located in the groove of the actuator stem.
- 2. Place the adapter bracket (6) on the positioner and mount using the screws (6.1). Make sure that the seals are correctly seated. For positioners with air purging, remove the stopper (5) before mounting the positioner. For positioners without air puraina, replace the screw plug (4) with a vent plug.
- 3. For actuators with 355, 700 and 750 cm², remove the follower pin (2) at lever M (1) on the back of the positioner from pin position 35, reposition it in the bore for pin position 50 and screw tight. For actuators 175, 240 and 350 cm² with 15 mm travel, the follower pin (2) remains in pin position 35.
- 4. Insert formed seal (6.2) in the groove of the adapter bracket.
- 5. Insert the formed seal (17.1) into the turnboard (17) and mount the turnboard to the adapter block (13) using the screws (17.2).
- 6. Mount the blank plate (18) to the turnboard (17) using the screws (18.1) Make sure that the seals are correctly seated.

Note: A solenoid valve can also be mounted in place of the blank plate (18). The orientation of the turnboard (17) determine the mounting position of the solenoid valve. Alternatively, a restrictor plate can be mounted (see AB 11).

- 7. Insert screws (13.1) through the middle holes of the adapter block (13).
- 8. Place the connecting plate (12) together with the seal (12.1) onto the screws (13.1) corresponding to the fail-safe action "actuator stem extends" or "actuator stem retracts".

The fail-safe action that applies is determined by aligning the groove of the adapter block (13) with the groove of the connecting plate (12) (Fig. 8).

- 9. Mount the adapter block (13) together with the connecting plate (12) to the actuator using the screws (13.1).
- 10. Insert the vent plug (11.1) to the Exh. connection.
- 11 For fail-safe action "actuator stem extends", seal the Y1 port with a blanking plua.
 - For fail-safe action "actuator stem retracts", connect the Y1 port to the signal pressure connection of the actuator.

- 12. Place the positioner on the adapter block (13) in such a manner that the follower pin (2) rests on the top of the follower clamp (3). Adjust the lever (1) correspondingly and open the positioner cover to hold the positioner shaft in position at the cap or the switch (Fig. 23). The lever (1) must rest on the follower clamp with spring force. Fasten the positioner to the adapter block (13) using the two fixing screws (6.3). Make sure the formed seal (6.2) is properly seated.
- 13. Mount cover (11) on the other side. Make sure that the vent plua points downwards when the control valve is installed to allow any condensed water that collects to drain off.

Attachment to NAMUR rib (see Fig. 9)

Refer to Table 4 on page 18 for the required mounting parts as well as the accessories. Note the travel table on page 15.

1. Series 240 Valves, actuator size up to 1400-60 cm²: Screw the two bolts (14) to the bracket of the stem connector or directly to the stem connector (depending on the version), place the follower plate (3) on top and use the screws (14.1) to fasten it.

Type 3251 Valve, 350 to 2800 cm²: Screw the longer follower plate (3.1) to the bracket of the stem connector or directly to the stem connector (depending on the version).

Type 3254 Valve, 1400-120 to 2800 cm²: Screw the two bolts (14) to the bracket (16). Fasten the bracket (16) onto the stem connector, place the follower plate (3) on top and use the screws (14.1) to fasten it.

Mount the positioner on the NAMUR rib as shown in Fig. 9.

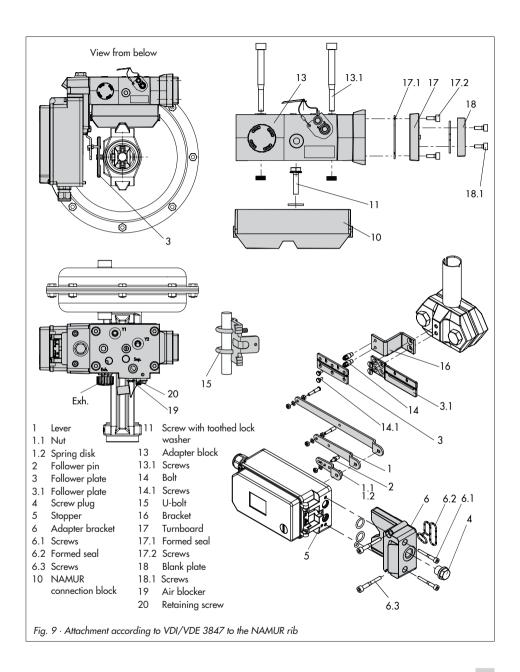
For attachment to the NAMUR rib. fasten the NAMUR connection block (10) directly into the existing yoke bore using the screw and toothed lock washer (11). Align the marking on the NAMUR valve connection (on the side marked '1') to 50 % travel.

For attachment to valves with rod-type yokes, use two U-bolts (15) around the stem.

Fasten the NAMUR connection block

- (10) directly into the existing yoke bore using the screw and toothed lock washer (11). Align the marking on the NAMUR connection block (on the side marked '1') to 50 % travel.
- 3. Place the adapter bracket (6) on the positioner and mount using the screws (6.1). Make sure that the seals are correctly seated. For positioners with air purging, remove the stopper (5) before mounting the positioner.
 - For positioners without air puraina, replace the screw plug (4) with a vent plug.
- 4. Select required lever size (1) M, L or XL and pin position according to the actuator size and valve travels listed in the table on page 15.

Should you require a pin position other than position 35 with the standard installed lever M, or require a lever size L or XL, proceed as follows:


- Screw the follower pin (2) in the assigned lever bore (pin position) as listed in the table. Only use the longer follower pin (2) included in the mounting kit.
- Place lever (1) on the positioner shaft and screw tight using the disk spring (1.2) and nut (1.1).
- Move the lever once all the way as far as it will go in both directions.
- 5. Insert formed seal (6.2) in the groove of the adapter bracket.
- 6. Insert the formed seal (17.1) into the turnboard (17) and mount the turnboard to the adapter block (13) using the screws (17.2).

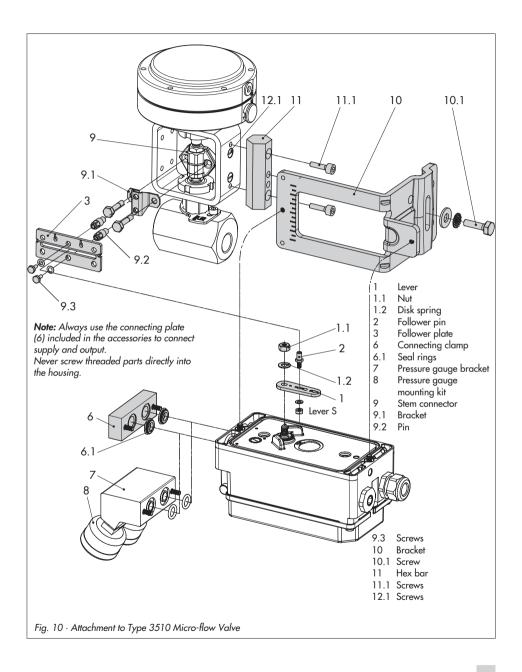
7. Mount the blank plate (18) to the turnboard (17) using the screws (18.1) Make sure that the seals are correctly seated

Note: A solenoid valve can also be mounted in place of the blank plate (18). The orientation of the turnboard (17) determine the mounting position of the solenoid valve. Alternatively, a restrictor plate can be mounted (see AB 11).

- 8. Mount the adapter block (13) to the NAMUR connection block using the screws (13.1).
- 9. Insert the vent plug (11.1) to the Exh. connection.
- 10. Place the positioner on the adapter block (13) in such a manner that the follower pin (2) rests on the top of the follower clamp (3). Adjust the lever (1) correspondingly. Fasten the positioner to the adapter block (13) using the two fixing screws
- (6.3). Make sure the formed seal (6.2) is properly seated. 11. For single-acting actuators without air
- purging connect the Y1 port of the adapter block to the signal pressure connection of the actuator. Seal the Y2 port with a blanking plug.

For double-acting actuators and actuators with air purging connect the Y2 port of the adapter block to the signal pressure connection of the second actuator chamber or spring chamber of the actuator.

Attachment to Type 3510 2.4 Micro-flow Valve


The positioner is attached to the valve yoke using a bracket.

Refer to Table 3 on page 18 for the required mounting parts as well as the accessories with their order numbers.

Note the travel table on page 15.

- 1. Screw bracket (9.1) to the stem connector (9).
- 2. Fasten the two pins (9.2) to the bracket (9.1) on the stem connector. Mount the follower plate (3) and fasten it using the screws (9.3).
- 3. Mount the travel indication scale (accessories) to the outer side of the yoke using the hex screws (12.1), ensuring that the scale is aligned with the stem connector.
- 4. Fasten the hex bar (11) onto the outer side of yoke by screwing the M8 screws (11.1) directly into the holes on the voke.
- 5. Fasten the bracket (10) to the hex bar (11) using the hex screw (10.1), washer and tooth lock washer.
- 6. Mount connecting plate (6) or pressure gauge bracket (7) with pressure gauges (8) on the positioner, making sure both seal rings (6.1) are seated properly.
- 7. Unscrew the standard installed lever M (1) including follower pin (2) from the positioner shaft.
- 8. Take lever \$ (1) and screw follower pin (2) in the bore for pin position 17.
- 9. Place lever **S** on the positioner shaft and screw tight using the disk spring (1.2)

- and nut (1.1).
- Move lever once all the way as far as it will go in both directions.
- 10. Place positioner on the bracket (10) in such a manner that the follower pin slides into the groove of the clamp (3). Adjust the lever (1) correspondingly. Screw the positioner to the bracket (10) using both its screws.

2.5 Attachment to rotary actuators

The positioner is mounted to the rotary actuator using two pairs of double brackets.

Refer to Table 5 on page 18 for the required mounting parts as well as the accessories with their order numbers.

Prior to the attachment of the positioner to the SAMSON Type 3278 Rotary Actuator, you have to mount the associated adapter (5) to the free end of the rotary actuator shaft

Note: On attaching the positioner as described below, it is imperative that the actuator's direction of rotation is observed.

- Place follower clamp (3) on the slotted actuator shaft or the adapter (5).
- 2. Place coupling wheel (4) with flat side facing the actuator on the follower clamp (3). Refer to Fig. 12 to align slot so that it matches the direction of rotation when the valve is in its closed position.
- 3. Screw coupling wheel and follower clamp tightly onto the actuator shaft using screw (4.1) and disk spring (4.2).
- 4. Screw the bottom pair of brackets (10.1) with the bends pointing either to the inside or to the outside (depending on the actuator size) to the actuator case. Position top pair of brackets (10) and screw tight.
- 5. Mount connecting plate (6) or pressure gauge bracket (7) with pressure gauges

- to the positioner, making sure both O-rings are seated properly. For double-acting, springless rotary actuators, a reversing amplifier is required to attach the positioner to the actuator, see section 2.6.
- 6. Unscrew the standard follower pin (2) from the positioner's lever M (1). Use the metal follower pin (Ø5) included in the mounting kit and screw tight into the bore for pin position 90°.
- 7. Place positioner on the top pair of brackets (10) and screw tight. Considering the actuator's direction of rotation, adjust lever (1) so that it engages in the slot of the coupling wheel (4) with its follower pin (see Fig. 12). It must be guaranteed that the lever (1) is parallel to the long side of the positioner when the actuator is at half its angle of rotation.
- 8. Stick scale plate (4.3) on the coupling wheel so that the arrow tip indicates the closed position, and it can be easily read when the valve is installed.

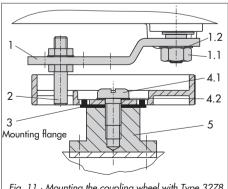
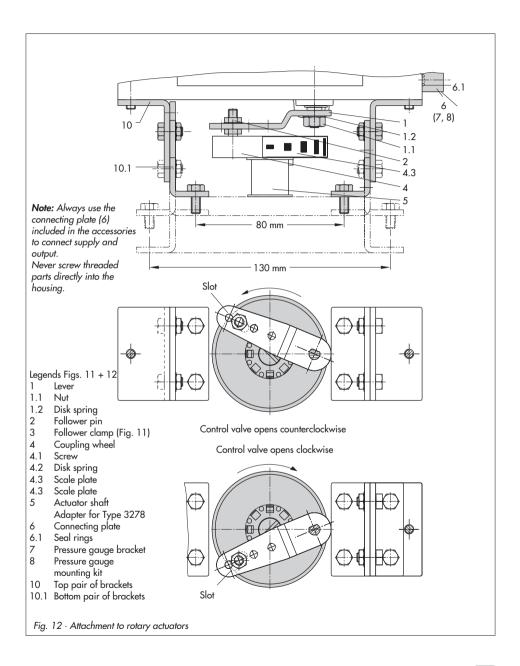
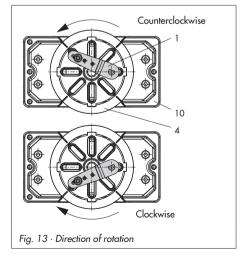



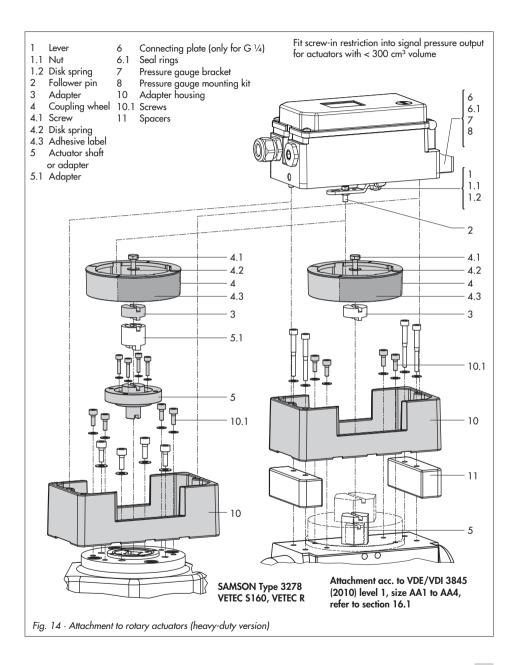
Fig. 11 · Mounting the coupling wheel with Type 3278

Heavy-duty version 2.5.1

Refer to Table 5 on page 18 for the required mounting parts as well as the accessories with their order numbers.


Both mounting kits contain all the necessary mounting parts. First select correct actuator size. Prepare actuator, and mount required adapter supplied by the actuator manufacturer, if necessary.

- 1. Mount the housing (10) onto the rotary actuator. In case of VDI/VDE attachment, place spacers (11) underneath, if necessary.
- 2. For SAMSON Type 3278 and VETEC \$160 Rotary Actuator, screw the adapter (5) onto the free end of the shaft or place adapter (5.1) onto the shaft of the VETEC R Actuator.


Place adapter (3) onto Type 3278, VETEC \$160 and VETEC R Actuator, For VDI/VDE version, this step depends on the actuator size.

- 3. Stick adhesive label (4.3) onto the coupling wheel in such a manner that the yellow part of the sticker is visible in the window of the housing when the valve is OPEN. Adhesive labels with explanatory symbols are enclosed and can be stuck on the housing, if required.
- 4. Screw tight coupling wheel (4) onto the slotted actuator shaft or adapter (3) using screw (4.1) and disk spring (4.2).
- 5. Undo the standard follower pin (2) on the lever M (1) of the positioner. Attach the follower pin (Ø 5) included in the mounting kit to pin position 90°.

- 6. If applicable, mount pressure gauge bracket (7) with pressure gauges or, in case G 1/4 threaded connections are required, the connecting plate (6), making sure both seal rings (6.1) are seated properly.
 - For double-acting, springless rotary actuators, a reversing amplifier is required to attach the positioner to the actuator. Refer to section 2.6.
- 7. For actuators with a volume of less than 300 cm³, fit the screw-in restriction (order no.1400-6964) into the signal pressure output of the positioner (or the output of the pressure gauge bracket or connecting plate).
- 8. Place positioner on housing (10) and screw it tight. Considering the actuator's direction of rotation, align lever (1) so that it engages in the correct slot of the coupling wheel with its follower pin (Fig. 13).

Attachment to the control valve - Mounting parts and accessories

Reversing amplifier for 2.6 double-acting actuators

For the use with double-acting actuators, the positioner must be fitted with a reversing amplifier, e.g. the SAMSON Type 3710 Reversing Amplifier (see Mounting and Operatina Instructions EB 8392 EN).

If a different reversing amplifier (item no. 1079-1118 or 1079-1119) is used, follow the mounting instructions described in section 2.6.1.

The following applies to all reversing amplifiers:

The output signal pressure of the positioner is supplied at the output A₁ of the reversing amplifier. An opposing pressure, which equals the required supply pressure when added to the pressure at A_1 , is applied at output A2.

The rule $A_1 + A_2 = Z$ applies.

A1: Output A1 leading to the signal pressure connection at the actuator which opens the valve when the pressure increases

A2: Output A2 leading to the signal pressure connection at the actuator which closes the valve when the pressure increases

Set slide switch on positioner to AIR TO OPEN

2.6.1 Reversing amplifier (1079-1118 or 1079-1119)

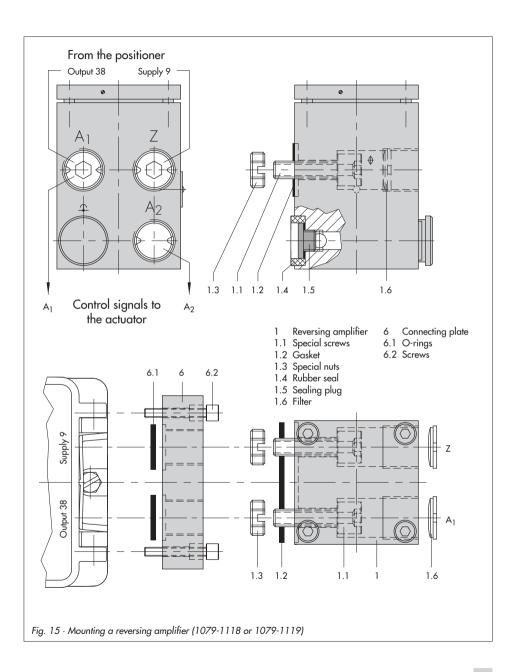
 Mount the connecting plate (6) from the accessories in Table 4 to the positioner. Make sure that both O-rings (6.1) are seated correctly.

- 2. Thread the special nuts (1.3) from the accessories of the reversing amplifier into the boreholes of the connecting plate.
- 3. Insert the gasket (1.2) into the recess of the reversing amplifier and push both the hollowed special screws (1.1) into the connecting boreholes A1 and Z.
- 4. Place the reversing amplifier onto the connecting plate (6) and screw tight using both the special screws (1.1).
- 5. Use a screwdriver (8 mm wide) to screw the enclosed filters (1.6) into the connecting boreholes A1 and Z.

NOTICE

The sealing plug (1.5) in the Type 3730 Positioner should not be unscrewed out of the reversing amplifier.

The rubber seal (1.4) is not required and can be removed when the sealing plug is used.


6. Set to OFF after initialization in Code 16 (pressure limit)

Pressure gauge attachment

The mounting sequence shown in Fig. 15 remains unchanged. Screw a pressure gauge bracket onto the connections A1 and Z.

Pressure gauge G 1/4 1400-7106 bracket: 1/4 NPT 1400-7107

Pressure gauges for supply air Z and output A₁ as listed in Tables 1 to 5.

2.7 Attaching an external position sensor

Refer to Table 7 on page 45 for a list of the mounting parts as well as the accessories required for mounting the position sensor. Accessories for the pneumatic connection to the positioner housing can be found in Table 8.

In the positioner version with an external position sensor, the sensor placed in a separate housing is attached over a plate or bracket to the control valve. The travel pick-off corresponds to that of a standard device.

The positioner unit can be mounted as required to a wall or a pipe.

Fig. 16 · Positioner unit with sensor mounted on a micro-flow valve

For the pneumatic connection either a connecting plate (6) or a pressure gauge bracket (7) must be fixed to the housing, depending on the accessory chosen. Make sure the seal rings (6.1) are correctly inserted (see Fig. 6, bottom right).

For the electrical connection a 10 m connecting lead with M12x1 connectors is included in the scope of delivery.

Note:

- In addition, the instructions in section 3.1 and 3.2 apply for the pneumatic and electrical connection.
 - Operation and setting are described in sections 4 and 5.
- Since 2009, the back of the position sensor (20) is fitted with two pins acting as mechanical stops for the lever (1). If this position sensor is mounted using old mounting parts, two corresponding Ø 8 mm holes must be drilled into the mounting plate/bracket (21). A template is available for this purpose. Refer to Table 7 on page 45.

2.7.1 Mounting the position sensor with direct

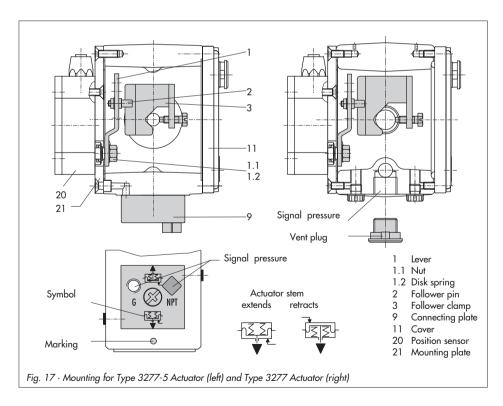
Type 3277-5 Actuator with 120 cm²

The signal pressure from the positioner is routed over the signal pressure connection of the connecting plate (9, Fig. 17 left) to the actuator diaphragm chamber. To proceed, first screw the connecting plate (9) included in the accessories onto the actuator yoke.

- Turn the connecting plate (9) so that the correct symbol for the fail-safe position "Actuator stem extends" or "Actuator stem retracts" is aligned with the marking (Fig. 17, below).
- Make sure that the gasket for the connecting plate (9) is correctly inserted.
- The connecting plate has boreholes with NPT and G threads. Seal the threaded connection that is not used with the rubber seal and square plug.

Type 3277 Actuator with 175 to 750 cm²:

The signal pressure is routed to the connection at the side of the actuator yoke for the version "Actuator stem extends".


For the fail-safe position "Actuator stem retracts" the connection on the top diaphraam case is used. The connection at the side of the yoke must be fitted with a venting plug (accessories).

Mounting the position sensor

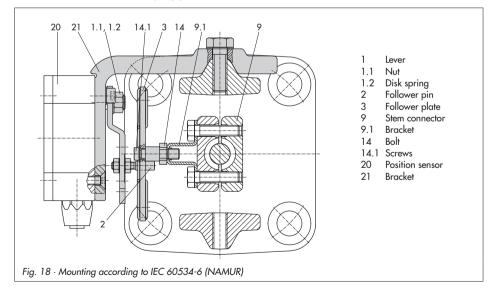
1. Place the lever (1) on the sensor in mid-position and hold it in place. Unthread the nut (1.1) and remove the

- lever together with the disk spring (1.2) from the sensor shaft.
- 2. Screw the position sensor (20) onto the mounting plate (21).
- 3. Depending on the actuator size and rated travel of the valve, determine the required lever and position of the follower pin (2) from the travel table on page 15.

The positioner is delivered with lever M in pin position 35 on the sensor. If necessary, remove the follower pin (2) from its pin position and move it to the bore-

hole for the recommended pin position and screw tight.

- Place the lever (1) and disk spring (1.2) on the sensor shaft.
 Place the lever (1) in mid-position and hold it in place. Screw on the nut (1.1).
- Place the follower clamp (3) on the actuator stem, align and fasten it, making sure that the fastening screw rests in the groove of the actuator stem.
- 6. Place the mounting plate (21) together with the sensor onto the actuator yoke so that the follower pin (2) rests on the top of the follower clamp (3). It must rest on it with spring force.
 Screw tight the mounting plate (21) onto the actuator yoke using both fixing screws.
- Mount cover (11) on the other side.Make sure that the vent plug points


downwards when the control valve is installed to allow any condensed water that collects to drain off.

2.7.2 Mounting the position sensor with attachment according to IEC 60534-6

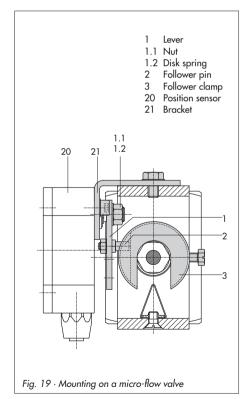
For the required mounting parts as well as the accessories, refer to the order numbers listed in Tables 7 and 8 on page 45.

- Place the lever (1) on the sensor in mid-position and hold it in place.
 Unthread the nut (1.1) and remove the lever together with the disk spring (1.2) from the sensor shaft.
- Screw the position sensor (20) onto the bracket (21).

The standard attached lever **M** with the follower pin (2) at position **35** is designed for

120 to 350 cm² actuators with 15 mm rated travel.

For other actuator sizes or travels, select the lever and pin position from the travel table on page 15. Lever L and XL are included in the mounting kit.

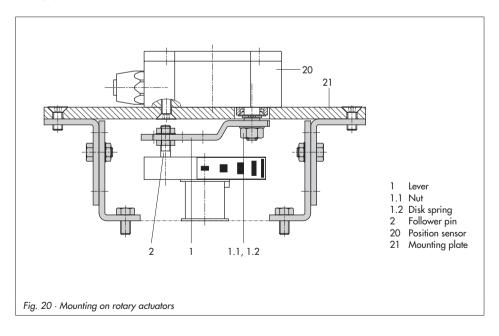

- 3. Place the lever (1) and disk spring (1.2) on the sensor shaft. Place the lever (1) in mid-position and hold it in place. Screw on the nut (1.1).
- 4. Screw both bolts (14) to the bracket (9.1) of the stem connector (9). Attach the follower plate (3) and fix with the screws (14.1).
- 5. Place the bracket with the sensor at the NAMUR rib in such a manner that the follower pin (2) rests in the slot of the follower plate (3), then screw the bracket using its fixing screws onto the valve.

2.7.3 Mounting the position sensor to Type 3510 Micro-flow Valve

For the required mounting parts as well as the accessories, refer to the order numbers listed in Tables 7 and 8 on page 45.

- 1. Place the lever (1) in mid-position and hold it in place. Unscrew the nut (1.1) and remove the standard attached lever M (1) together with the disk spring (1.2) from the sensor shaft.
- 2. Screw the position sensor (20) onto the bracket (21).
- 3. Select the lever \$ (1) from the accessories and screw the follower pin (2) into the hole for pin position 17.

- Place the lever (1) and disk spring (1.2) on the sensor shaft.
- Place the lever (1) in mid-position and hold it in place. Screw on the nut (1.1).
- 4. Place the follower clamp (3) on the stem connector, alian it at a right angle and screw tiaht.
- 5. Position the bracket (21) with the position sensor on the valve yoke and screw tight, making sure the follower pin (2) slides into the groove of the follower clamp (3).


2.7.4 Mounting the position sensor to rotary actuators

For the required mounting parts as well as the accessories, refer to the order numbers listed in Tables 7 and 8 on page 45.

- Place the lever (1) in mid-position and hold it in place. Unscrew the nut (1.1) and remove the standard attached lever M (1) together with the disk spring (1.2) from the sensor shaft.
- 2. Screw the position sensor (20) onto the mounting plate (21).
- Replace the follower pin (2) normally attached to the lever (1) with the metal follower pin (Ø 5) from the accessories and screw it into the hole for pin position 90°.

- 4. Place the lever (1) and disk spring (1.2) on the sensor shaft.
 - Place the lever (1) in mid-position and hold it in place. Screw on the nut (1.1).

Follow the instructions describing attachment to the standard positioner in section 2.5 Instead of the positioner, attach the position sensor (20) with its mounting plate (21).

Attachment to the control valve — Mounting parts and accessories

Table 7	Attachment of external position sensor		Order no.	
Template for mounting the position sensor on older mounting parts. See note on page 40.		1060-0784		
Direct attachment Mounting parts for actuators with 120 cm² see Fig. 17 left		1400-7472		
	C	G 1/8	1400-6820	
	Connecting plate (9, old) for Actuator Type 3277-5xxxxxx.00	½ NPT	1400-6821	
Accessories for actuator 120 cm ²	Connecting plate (new) for Actuator Type 3277-5xxxxxx.01 (new) 1)		1400-6823	
	Note: Only new switchover and connecting plates can be used with new actuators (Index 01). Old and new plates are not interchangeable.			
Direct attachment	Mounting parts for actuators with 175, 240, 350, 355 and 750 cm ² , see Fig. 17 1400-7471 right			
NAMUR attachmt	Mounting parts for attachment to NAMUR rib with lever L and XL, see Fig. 18 1400-746		1400-7468	
Micro-flow valve	Mounting parts for Type 3271 Actuator with 60 cm², see Fig. 19		1400-7469	
VDI/VDE 3845 (September 2010), refer to section 16.1 for details				
Attachment to	Actuator surface area corresponds to level 1 Size AA1 to AA4 with follower clamp and coupling wheel, version with CrNiMo steel bracket, see Fig. 20 Size AA1 to AA4, heavy-duty version Size AA5, heavy-duty version (e.g. Air Torque 10 000)		1400-7473 1400-9384 1400-9992	
rotary actuators Bracket surface area corresponds to level 2, heavy-duty version		1400-9974		
	SAMSON Type 3278 with 160 cm² (also for VETEC Type S160 and Type R), heavy-duty version		1400-9385	
	SAMSON Type 3278 with 320 cm ² and for VETEC Type S320, heavy-duty version		1400-5891 and 1400-9974	

Table 8	Positioner accessories		Order no.
	Connecting plate (6)	G 1/4 1/4 NPT	1400-7461 1400-7462
	or pressure gauge bracket (7)	G 1/4 1/4 NPT	1400-7458 1400-7459
Accessories	Pressure gauge mounting kit (8) up to max. 6 bar (output and supply)	St. steel/brass St.st./st. steel	1402-0938 1402-0939
Bracket to mount the positioner on a wall Note: The other fastening parts are to be provided at the site of installation as wall foundations vary from site to site.		0309-0184	

2.8 Attaching positioners with stainless steel housings

Positioners with stainless steel housings require mounting parts that are completely made of stainless steel or free of aluminum.

Note: The pneumatic connecting plate and a pressure gauge bracket are available in stainless steel (order number listed below). The Type 3710 Pneumatic Reversing Amplifier is also available in stainless steel.

Connecting plate (stainless steel):	G 1/4 1/4 NPT	1400-7476 1400-7477
Pressure gauge	G 1/4	1402-0265
bracket (st. steel):	1/4 NPT	1400-7108

The Tables 1 to 5 (pages 10 and 19) apply for attaching positioners with stainless steel housings with the following restrictions:

Direct attachment

All mounting kits from Tables 1 and 2 can be used. The connection block is not reauired. The stainless steel version of the pneumatic connecting plate routes the air internally to the actuator.

Attachment according to IEC 60534-6 (NAMUR rib or attachment to rod-type yokes)

All mounting kits from Table 3 can be used. Connecting plate in stainless steel.

Attachment to rotary actuators

All mounting kits from Table 5 can be used except for the heavy-duty version. Connecting plate in stainless steel.

2.9 Air purging function for single-acting actuators

The exhaust air from the positioner is diverted to the actuator spring chamber to provide corrosion protection inside the actuator. The following must be observed:

Direct attachment to Type 3277-5 (stem extends FA/stem retracts FE)

The air purging function is automatically provided.

Direct attachment to Type 3277, 175 to 750 cm²

FA: Remove the stopper 12.2 (Fig. 5 on page 23) at the connection block and make a pneumatic connection to the spring chamber on the vented side.

NOTICE

The method described does not apply to old connection blocks in powderpaint-coated aluminum. In this case, follow the instructions for attachment described below in "Attachment acc. to IEC 60534-6 (NAMUR rib or attachment to rod-type yokes) and to rotary actuators".

FE: The air purging function is automatically provided.

Attachment acc. to IEC 60534-6 (NAMUR rib or attachment to rod-type yokes) and to rotary actuators

The positioner requires an additional port for the exhaust air that can be connected

over piping. An adapter available as an accessory is used for this purpose:

Threaded bushing G 1/4 0310-2619 $(M20 \times 1.5)$: 1/4 NPT 0310-2550

NOTICE

The adapter uses one of the M20 x 1.5 connections in the housing which means just one cable gland can be installed.

Should other valve accessories be used which vent the actuator (e.g. solenoid valve, volume booster, quick exhaust valve), this exhaust air must also be included in the purging function. The connection over the adapter at the positioner must be protected with a check valve (e.g. check valve G 1/4, order no. 8502-0597) mounted in the piping. Otherwise the pressure in the positioner housing would rise above the ambient pressure and damage the positioner when the exhausting components respond suddenly.

3 Connections

3.1 Pneumatic connections

NOTICE

The threads in the positioner housing are not designed for direct air connection!

The screw glands must be screwed into the connecting plate, the pressure gauge mounting block or the connection block from the accessories. The air connections are optionally designed as a bore with 1/4 NPT or G 1/4 thread.

The customary fittings for metal and copper pipes or plastic hoses can be used.

Note:

The supply air must be dry and free from oil and dust. The maintenance instructions for upstream pressure reducing stations must be observed.

Blow through all air tubes and hoses thoroughly prior to connecting them.

If the positioner is attached directly to the Type 3277 Actuator, the connection of the positioner's output pressure to the actuator is fixed. For attachment according to IEC 60534-6 (NAMUR), the signal pressure can be routed to either the top or bottom diaphragm chamber of the actuator, depending on the actuator's fail-safe action "Actuator stem extends" or "Actuator stem retracts".

For rotary actuators, the manufacturer's specifications for connection apply.

Signal pressure gauges 3.1.1

To monitor the supply air (Supply) and signal pressure (Output), we recommend that pressure gauges be attached (see accessories in Tables 1 to 5).

3.1.2 Supply pressure

The required supply air pressure depends on the bench range and the actuator's operatina direction (action).

The bench range is registered on the nameplate either as spring range or signal pressure range depending on the actuator. The direction of action is marked **FA** or **FE**, or by a symbol.

Actuator stem extends FA (air-to-open ATO)

Fail-safe position "Valve Closed" (for globe and angle valves):

Required supply pressure = Upper bench range value + 0.2 bar, minimum 1.4 bar.

Actuator stem retracts FE (air-to-close ATC)

Fail-safe position "Valve Open" (for alobe and angle valves): For tight-closing valves, the maximum signal pressure pst_{max} is roughly estimated as follows:

$$pst_{max} = F + \frac{d^2 \cdot \pi \cdot \Delta p}{4 \cdot A} [bar]$$

d = Seat diameter [cm]

 Δp = Differential pressure across the valve

A = Actuator diaphragm area [cm²]

= Upper bench range of the actuator [bar]

If there are no specifications, calculate as follows:

Required supply pressure = Upper bench range value + 1 bar

Note: The signal pressure at the output (Output 38) of the positioner can be limited to 1.4, 2.4 or 3.7 bar over Code 16 or the pressure limit can be deactivated (MAX).

3.2 Electrical connections

The following standards apply to installations in hazardous areas: EN 60079-14: 2008 (VDE 0165 Part 1) Explosive atmospheres - Electrical installations design, selection and erection.

NOTICE

- The terminal assignment must be adhered to. Reversing the assignment of the electrical terminals may cause the explosion protection to become ineffective!
- Do not loosen enameled screws in or on the housing.
- For the interconnection of intrinsically safe electrical equipment, the permissible maximum values specified in the EC type examination certificate apply (U_i or U_o, I_i or I_o, P_i or P_o, C_i or C_o and L_i or L_o).

Note on the selection of cables and wires:

To install intrinsically safe circuits, observe Clause 12 of EN 60079-14: 2008 (VDE 0165 Part 1).

To run multi-core cables or lines with more than one intrinsically safe circuit, clause 12.2.2.7 of this standard applies. Especially for commonly used insulating materials, such as polyethylene, the radial thickness of the conductor insulation must have a minimum thickness of 0.2 mm. The diameter of a single wire of a flexible conductor must not be smaller than 0.1 mm. Protect the conductor ends against splicing, e.g. by using wire-end ferrules.

When two separate cables are used for connection, an additional cable gland can be installed.

Seal cable entries left unused with blanking plugs.

Devices used at ambient temperatures **below -20** °C must be fitted with metal cable alands.

Equipment for use in zone 2/zone 22

In equipment operated with type of protection Ex nA II (non-sparking apparatus), the standard EN 60079-15: 2003 specifies that circuits may be connected, interrupted or switched while energized only during installation, maintenance or repair.

For equipment connected to energy-limited circuits with type of protection Ex nL (energy-limited apparatus), the standard EN 60079-15: 2003 allows this type of equipment to be switched under normal operating conditions.

For the interconnection of equipment to energy-limited circuits with type of protection Ex nL IIC, the permissible maximum values specified in the statement of conformity apply.

Cable entry

The cable entry with M20 \times 1.5 cable gland, 6 to 12 mm clamping range.

There is a second M20 \times 1.5 threaded bore in the housing that can be used for additional connection, when required.

The screw terminals are designed for wire cross-sections of 0.2 to 2.5 mm² (tightening torque of screws 0.5 to 0.6 Nm).

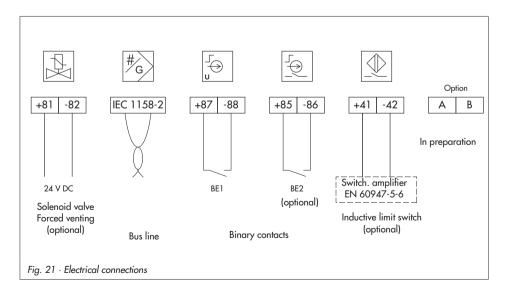
Note: The power supply for the positioner can be supplied either over the connection to the fieldbus segment or over a DC voltage source (9 to 32 V) connected to the bus terminals in the positioner. You are required to observe the relevant regulations for use in hazardous areas.

Stainless steel 1.4305	0000 01/0
(8 to 14.5 mm clamping range)	8808-0160
EMC cable	8808-0143
Nickel-plated brass	

Adapter M20 x 1.5 to 1/2 NPT

Aluminum, powder paint coated	0310-2149
Stainless steel	1400-7114

Accessories:


Cable gland M20 x 1.5	Order no.
Black plastic (6 to 12 mm clamping range)	8808-1011
Blue plastic (6 to 12 mm clamping range)	8808-1012
Nickel-plated brass (6 to 12 mm clamping range)	1890-4875
Nickel-plated brass (10 to 14 mm clamping range)	1922-8395

Bus line

Route the two-wire bus line to the screw terminals marked "IEC 1158-2", whereby no polarity has to be observed.

Refer to the PROFIBUS-PA User + Installation Guide (PNO document 2.092) for more information.

Note: To connect the limit switch, binary inputs and forced venting, an additional cable

gland that needs to be fitted in place of the existing blanking plug is necessary. Open cable glands are not permissible as the degree of protection IP 66 only applies when the positioner housing is sealed.

Limit switch

For operation of the limit switches, switching amplifiers have to be connected in the output circuit. Their function is to control the limit values of the control circuit according to EN 60947-5-6, thus ensuring operational reliability of the positioner. If the positioner is installed in hazardous areas, the relevant regulations must be observed.

Binary input 1

An active contact can be operated at binary input 1. The positioner can report the switching state over the bus protocol.

Binary input 2

A passive, floating contact can be operated at binary input 2.

The positioner can report the switching state over the bus protocol.

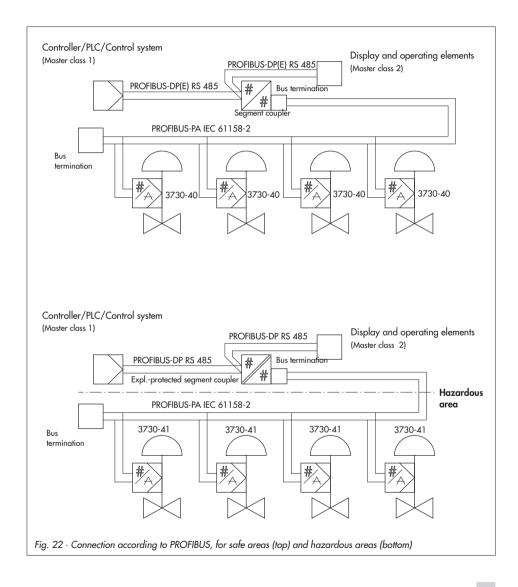
Solenoid valve (forced venting function)

For positioners fitted with the optional solenid valve for the forced venting function, a voltage of 24 V DC must be connected to the relevant terminals +81 and -82.

NOTICE

If there is no voltage connected for the solenoid valve at terminals +81 and -82 or when the voltage signal is interrupted, the

positioner vents the actuator and does not respond to the reference variable. Observe the switching thresholds specified in the technical data.


Establishing communication

The communication structure between the controller, logic solvers (PLC) or automation system, or between a PC or work station and the positioner(s) is implemented by a segment coupler (see Fig. 22) conforming to PROFIBUS directives.

Explosion-protected versions of PROFIBUS-PA seament couplers must be used in hazardous areas.

A maximum of 32 positioners may be operated in parallel over a segment coupler in one PROFIBUS-PA segment. In hazardous areas, the number of positioners that can be connected is reduced.

Each positioner connected in the segment must be assigned a unique bus address between 0 and 125 (refer to section 5.11).

4 **Operation**

Note: A summary about operating and start up can be found in section 8 on page 79.

4.1 Operator controls and readinas

Rotary pushbutton

The positioner is mainly operated with the rotary pushbutton.

Turn the \B button to select and set codes, parameter and values. Press to confirm.

Slide switch AIR TO OPEN or AIR TO CLOSE

- AIR TO OPEN applies when the increasing signal pressure opens the valve
- AIR TO CLOSE applies when the increasing signal pressure closes the valve

The signal pressure is the air pressure at the output of the positioner which is applied to the actuator.

For positioners with an attached reversing amplifier for double-acting rotary actuators (section 2.6): switch position AIR TO OPEN.

For checking purposes:

After successfully completing initialization, the positioner display should read 0 % when the valve is closed and 100 % when the valve is open. If this is not the case, change the slide switch position and re-initialize the positioner.

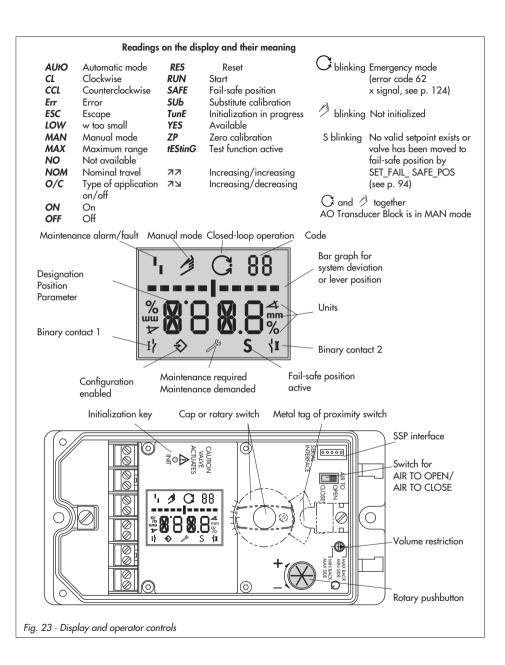
The switch position is prompted prior to an initialization. After an initialization has been completed, changing the switch position

does not have any effect on the operation of the positioner.

Volume restriction Q

The volume restriction is used to adapt the air delivery to the actuator size. Two fixed settings are possible depending on how the air is routed at the actuator:

- For actuators smaller than 240 cm² with a loading pressure connection at the side (Type 3271-5), set restriction to MIN SIDE.
- For a connection at the back (Type 3277-5), set restriction to MIN BACK.
- For actuators 240 cm² and larger, set to MAX SIDE for a side connection and to MAX BACK for a connection at the back.


Readings on the display

A self test is performed automatically (tEStinG runs across the display) when the positioner starts up for the first time after the electrical auxiliary power has been connected.

Icons appear on the LC display that are assigned to parameters, codes and functions. The bar elements in the operating modes manual and automatic indicate the system deviation that depends on the sign (+/-) and the value. One bar element appears per 1 % system deviation.

If the device has not yet been initialized (see section 4.3.1), the lever position in degrees in relation to the longitudinal axis is indicated instead of the system deviation. One bar element corresponds to approximately a 5° angle of rotation.

If the fifth element blinks (value displayed > 30°), the permissible angle of rotation has been exceeded. Lever and pin position must be checked.

4.2 **Enabling and selecting** parameters

The codes which are marked with an asterisk (*) in section 15.1 on page 111 onwards must be enabled with Code 3 before the associated parameters can be configured as described below.

Code 3 Configuration not enabled

Configuration enabled

- From the current display, turn the rotary pushbutton until Code 3 and OFF appear on the display. Confirm Code 3 by pressing the button, the code number blinks.
- Turn ⊕ button until *ON* appears. Confirm setting by pressing the button.

Configuration is enabled and is indicated by symbol appearing on the display. Now you can adjust the codes, parameters and values for the control valve in any desired order by turning the button. Confirm settings by pressing the button.

Important!

To cancel a value that you have just entered under a code, turn the button until ESC appears on the display and press to confirm.

Canceling the setting

Note: If no settings are entered within 120 seconds, the enabled configuration function becomes invalid and the display resets to Code 0.

The code list in section 15.1 on page 111 onwards shows all parameters that can be adjusted, including their description and their default settinas.

Note:

After attaching the positioner to the valve, defining the valve closed position and setting the volume restriction, it is sufficient for standard operation to press the initialization key in order to ensure optimum positioner operation (section 5.6 on page 62). For this purpose, the positioner must be operated with its default values. If necessary, a reset must be carried out (section 5.9 on page 71).

4.3 **Operating modes**

4.3.1 Automatic and manual operating modes

Prior to initialization:

If the positioner has not been initialized yet, the automatic operating **AUtO** cannot be selected.

The valve can only be positioned manually with the positioner.

To proceed, turn 🕏 button clockwise until Code 1 appears, then confirm Code 1 by pressing the button.

If both the code number and the hand symbol are blinking, the valve can be manually positioned by turning the button.

After initialization:

After successful initialization in the MAX, **NOM** or **MAN** mode (section 5.6.1), the positioner is in the automatic control operation mode C

Default

Switching to manual operating mode

Over Code 0, press the \button, AUtO appears in the display, Code 0 blinks.

Turn button until MAN appears.

Press button to switchover to the manual operating mode 🧷 .

The switchover is smooth since the manual operating mode starts up with the set point last used during automatic operating mode. The current position is displayed in %.

Adjusting the manual set point

Turn button until Code 1 appears.

Press button to confirm, Code 1 blinks.

While Code 1 is blinking, you can move the valve to the position required by turning the button. To proceed, turn the button until enough the positioner has built up enough pressure and the control valve starts to react. The positioner automatically returns to manual mode with Code 0 if the button is not activated within two minutes.

Switching from manual to automatic operating mode works in the same manner. First, you must reset the positioner over Code 0 to automatic mode AUtO and confirm this setting.

4.3.2 SAFE – Fail-safe position

If you want to move the valve to fail-safe position, proceed as follows:

Select Code 0, press the button, AUTO or MAN appears on the display, Code 0 blinks.

Turn the ⊗ button until *SAFE* appears.

Press the button to confirm this setting.

CAUTION!

The valve moves to the fail-safe position. The **S** symbol for the fail-safe position appears on the display.

Once the positioner is initialized, the current valve position is indicated on the digital display in %.

If you want to return the valve from the fail-safe position to the operating mode **AUtO** or **MAN**, the button must be pressed while Code 0 is active.

When the code number blinks, turn the button to switch to the desired operating mode

Press the button to confirm.

Note: The valve can be moved to the fail-safe position over the fieldbus by the SET_FAIL_SAFE_POS parameter (see page 178).

Start-up and settings 5

Note: A summary about start-up and operation can be found in section 8 on page 79.

- Connect pneumatic supply air (Supply 9), making sure the pressure is correct as described in section 3.1.
- Apply the electric reference variable as described in section 3.2.
- The voltage supply >19 V DC for version with a solenoid valve must be connected at terminals 81 (+) und 82 (-).

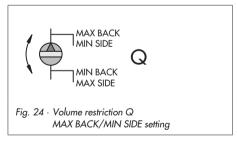
WARNING!

Supply pressure may cause the actuator stem to move. Risk of injury!

Note: The positioner performs a test in the start-up phase while following its automation task at the same time. During the start-up phase, operation on site is unrestricted, yet write access is limited. A valid set point from the process control system still does not exist if a blinking S appears on the display (see page 94).

5.1 Defining the valve closed position

To adapt the positioner to the operating direction of the actuator, set slide switch to AIR TO OPEN or AIR TO CLOSE.


AIR TO OPEN = Signal pressure opens the valve, for fail-safe position: actuator stem extends/fail close

AIR TO CLOSE = Signal pressure closes the valve, for fail-safe position: actuator stem retracts/fail open.

The switch position is prompted prior to an initialization. After an initialization has been completed, changing the switch position does not have any effect on the operation of the positioner.

The positioner only needs to be initialized again after the direction of action of the actuator has been changed.

5.2 Setting the volume restriction Q

The volume restriction Q is used to adapt the air delivery to the size of the actuator:

Actuators with a **transit time < 1 s**, e.g. linear actuators with an effective area smaller than 240 cm², require a restricted air flow rate (MIN).

Actuators with a transit time ≥ 1 s do not require the air flow rate to be restricted (MAX).

The position of volume restriction Q also depends on how the signal pressure is routed at the actuator in **SAMSON** actuators:

- The SIDE position applies for actuators with a loading pressure connection at the side, e.g. Type 3271-5.
- The BACK position applies for actuators with a loading pressure connection at the back, e.g. in Type 3277-5.

The SIDE restriction position always applies for actuators from other manufacturers.

Overview · Position of volume restriction Q*

Signal time pressure	< 1 s	≥ 1 s
Connection at the side	MIN SIDE	MAX SIDE
Connection at the back	MIN BACK	MAX BACK

^{*} Intermediate positions are not permitted.

Note: The positioner needs to be initialized again after the position of the restriction has been changed.

5.3 Adapting the display

The data representation on the positioner display can be turned by 180°. If the displayed data appear upside down, proceed as follows:

Reading direction for right attachment of pneumatic connections

Reading direction for left attachment of pneumatic connections

Turn the ⊕ button until Code **2** appears, and press the ⊕ button to confirm Code **2**, Code **2** blinks.

Turn button until the display is adjusted to the desired direction, then confirm reading direction by pressing the button.

5.4 Limiting the signal pressure

If the maximum actuator force may cause damage to the valve, the signal pressure must be limited. Select Code 3 to enable configuration and then access Code 16 to set the pressure limit to 1.4, 2.4 or 3.7 bar.

The required signal pressure limit is only automatically recognized on initialization when the valve closed position AIR TO OPEN is set.

5.5 Checking the operating range of the positioner

To check the mechanical attachment and the proper functioning, the valve should be moved through the operating range of the positioner in the manual operating mode with the manual reference variable.

Code 0 Select manual operation Default *MAN*

Code 1
Position valve using the rotary pushbutton, the current angle of rotation is indicated

- Turn the ⊕ button until Code 0 appears, then confirm Code 0 by pressing the ⊕ button
- Turn the ⊕ button until MAN appears in the display, i.e. manual operating mode, confirm selected operating mode by pressing the ⊕ button.
- Turn the ⊕ button until Code 1 appears, confirm Code 1 by pressing ⊕ button.
 The hand symbol and Code 1 blink.
- 4. Position control valve by turning the button several times until pressure builds up, and the control valve moves to its final positions so that the travel/angle of rotation can be checked.

 The angle of rotation on the back of the

The angle of rotation on the back of the positioner is indicated. A horizontal lever (mid position) is equal to 0°.

The permissible range has been ex-

ceeded when the displayed angle is higher than 30°, and the outer right or left bar graph element blinks. If this is the case, it is absolutely necessary to check lever and pin position as described in section 2.

Note: If the selected pin position is smaller than intended for the respective travel range and exceeds 30°, the positioner switches to the SAFE mode, the valve moves to the fail-safe position (see section 4.3.2 on page 58).

5. Initialize positioner as described in section 5.6.

Simplified start-up

For most applications, the positioner with its default settings is ready for operation, provided it has been properly attached.

After the fail-safe position and the volume restriction have been set, the positioner only needs to be initialized by pressing the INIT key.

NOTICE

Prior to starting the initialization procedure, check the maximum permissible supply pressure of the control valve to prevent the valve from being damaged. On initialization, the positioner supplies the maximum available supply pressure. If necessary, restrict the signal pressure by using a pressure reducing valve upstream of the control valve. Initialization is run in default mode MAX (section 5.6.1). During this process, the positioner adapts itself optimally to the maximum travel/angle of rotation range. The only parameter that must be checked is the direction of action, i.e. whether the default setting (Code 7 to 77 = increasing/increasing) matches the application or whether it must be changed.

The initialization modes described in following serve to individually adapt and optimize the positioner to the way it is attached to the valve.

Initialization 5.6

During initialization the positioner adapts itself optimally to the friction conditions and the signal pressure demand of the control valve.

The type and extent of self-adaptation depends on the set initialization mode (see section 5.6.1).

MAX is the default setting for initialization based on the maximum nominal range.

If configuration is enabled via Code 3, Code 6 can be used to change to other initialization modes.

If the positioner has been initialized once already, it will automatically go to the operating mode used last after the electrical reference variable is applied, Code **0** appears on the display.

If the positioner has not yet been initialized, the 'i symbol appears on the display and the symbol starts to blink.

NOTICE

After the positioner has been mounted onto another actuator or its mounting location has been changed or prior to re-initializing the positioner, the positioner needs to be reset to its default settings. Refer to section 5.9 on page 71.

Start the initialization process by pressing the INIT key with a suitable tool.

The time required for an initialization process depends on the transit time of the actuator and take several minutes.
Positioners with EXPERT+ diagnostic functions start plotting the reference graphs after the initialization process has been completed. See note at the end of this section.

WARNING!

During the initialization, the control valve moves through its entire travel/angle of rotation range. Therefore, do not start initialization while a process is running, but only during start-up, when all shut-off valves are closed.

Note: The initialization procedure can be interrupted while running by pressing . StOP appears three seconds long and the positioner then moves to the fail-safe position.

The fail-safe position can be canceled again over Code 0.

Alternating displays Initialization running Symbol depending on initialization mode selected

Bar graph display indicating the progress of the initialization

Initialization successful, positioner in automatic operating mode After a successful initialization, the positioner runs in closed-loop operation indicated by the C closed-loop operation icon.

The control position in % predetermined by the reference variable appears on the display.

A malfunctioning leads to the process being interrupted. The initialization error appears on the display according to how it has been classified by the condensed status. See section 5.7 on page 70.

If the slide switch is set to AIR TO CLOSE, the positioner automatically switches to the direction of action increasing/decreasing (Au) on successful completion of initialization. This results in the following assignment between reference variable and valve position:

Valve closed position	Direction of action	Reference Va Closed at	
AIR TO OPEN	77	0 %	100 %
AIR TO CLOSE	מע	100 %	0 %

The tight-closing function is activated.

Set Code 15 (final position w>) to 99 % for three-way valves.

Further settings relevant for the valve can be entered subsequently.

Note on EXPERT⁺: Positioner with integrated EXPERT⁺ diagnostics automatically start to plot the reference graphs (drive signal y d1 and hysteresis d2) after initialization has been completed. TEST d1 and d2 appear on the display in an alternating sequence.

An unsuccessful plotting of the reference graphs is indicated on the display by Code 81 (see error code list).

After the initialization has been successfully completed, the positioner still works properly, even though the reference graph plotting has not been completed successfully. The plotting of the reference graphs can be interrupted by pressing .

The reference graphs are required for the extended diagnostic functions of EXPERT+.

5.6.1 Initialization modes

After enabling configuration with Code 3 and accessing Code 6, you can choose one of the initialization modes MAX, NOM, MAN or SUb to start initialization. **ZP**. the zero calibration is described in section 5.8 on page 71.

MAX - Initialization based on maximum range

Initialization mode for simplified start-up for valves with two clearly defined mechanical travel stops, e.g. three-way valves.

The positioner determines travel/angle of rotation of the closing member from the CLOSED position to the opposite side and adopts this travel/angle of rotation as the operating range from 0 to 100 %.

Enable configuration:

Default OFF

Turn $\bigoplus \rightarrow \mathsf{Code} \; \mathbf{3}$, press \bigoplus ,

turn $\bigoplus \rightarrow ON$, press \bigoplus .

After enablina:

Default MAX

Turn $\bigoplus \rightarrow \mathsf{Code} \, \boldsymbol{6}$, press \bigoplus ,

turn $\bigoplus \rightarrow MAX$, press \bigoplus .

Press INIT key to start initialization!

The initialization procedure may take several minutes, depending on the actuator size, as the valve moves through its entire travel/angle of rotation range.

Positioners with EXPERT+ diagnostic functions automatically start plotting the reference graphs after the initialization process has been completed. See page 63.

Note: For this MAX initialization, the positioner cannot indicate the nominal travel/angle of rotation in mm/° at first, Code 5 remains disabled. In addition, the lower (Code 8) and the upper (Code 9) x-range value can only be displayed in % and modified.

If you want the display to indicate mm/°, proceed as follows after configuration has been enabled:

Turn $\bigoplus \rightarrow \mathsf{Code} \, \mathbf{4}$, press \bigoplus ,

turn ⊕ → Select pin position determined on attachment, press .

If you now switch to Code 5, the nominal range appears in mm/°.

The lower and upper x-range values for Code 8 and 9 are displayed in mm/° and can be adapted accordingly.

NOM – Initialization based on nominal range

Initialization mode for globe valves, especially for valves with maximum ranges that are clearly greater than the required nominal range.

For this initialization mode, the following parameters must be entered: pin position (Code 4) and nominal travel/angle (Code 5).

The calibrated sensor enables the effective valve travel to be preset very accurately. During the initialization procedure, the positioner checks whether the control valve can move through the indicated nominal range (travel or angle) without collision. In case of a positive result, the indicated nominal range is adopted with the limits of lower x-range and upper x-range values as the operating range.

Note: The maximum possible travel must always be greater than the nominal travel entered. If this is not the case, the initialization is interrupted (error indication Code **52**) because the nominal travel is not achieved.

Enable configuration:

Turn $\bigoplus \rightarrow \mathsf{Code} \; 3$, press \bigoplus .

turn $\bigoplus \rightarrow ON$, press \bigoplus .

After enabling:

Turn $\bigoplus \rightarrow \mathsf{Code} \, \mathbf{4}$, press \bigoplus ,

turn igotimes ightarrow Select pin position determined on attachment, press .

Turn $\bigoplus \rightarrow \mathsf{Code} \, \mathbf{5}$, press \bigoplus , turn \bigoplus \rightarrow Enter nominal travel/angle,

press .

Default MAX

Turn $\bigoplus \rightarrow \mathsf{Code}\, \boldsymbol{\delta}$, press \bigoplus ,

turn $\bigoplus \rightarrow NOM$, press \bigoplus .

Press INIT key to start initialization!

The initialization procedure may take several minutes, depending on the actuator size, as the valve moves through its entire travel/angle of rotation range.

Positioners with EXPERT+ diagnostic functions automatically start plotting the reference graphs after the initialization process has been completed. See page 63.

Check the direction of action and, if necessary, set over Code 7.

MAN - Initialization based on a manually selected range

(with default upper x-range value by means of manual adjustment).

Initialization mode just as **NOM**, however, for starting up valves with unknown nominal range.

In this mode, the positioner expects the control valve to be moved manually to the desired OPEN position prior to enabling the initialization procedure.

The upper range travel/angle of rotation value is adjusted using the rotary pushbutton. Turn it clockwise in small steps. The valve must move to the required valve position with a monotonically increasing signal pressure.

The positioner uses this OPEN position and the CLOSED position to calculate the differential travel/angle and accepts it as the operating range with the lower x-range value and upper x-range value being the limits.

Enable configuration:

Default OFF

Turn $\bigoplus \rightarrow \mathsf{Code} \; \mathbf{3}$, press \bigoplus .

turn $\bigoplus \rightarrow ON$, press \bigoplus .

After enabling:

Turn $\bigoplus \rightarrow \mathsf{Code} \, \mathbf{4}$, press \bigoplus .

turn ⊕ → Select pin position determined on attachment, press .

Turn $\bigoplus \rightarrow \mathsf{Code}\,\mathbf{6}$, press \bigoplus ,

turn $\bigoplus \rightarrow MAN$, press \bigoplus .

Default MAX

Turn $\bigoplus \rightarrow \mathsf{Code} \ \mathbf{0}$, press \bigoplus ,

turn $\bigoplus \rightarrow MAN$, press \bigoplus .

Default MAN

Turn $\otimes \to \mathsf{Code} \, \mathbf{1}$, press \otimes , Code 1 blinks.

Turn until the valve reaches its OPEN position, press .

Press INIT key to start initialization!

The initialization procedure may take several minutes, depending on the actuator size, as the valve moves through its entire travel/angle of rotation range.

Positioners with EXPERT+ diagnostic functions automatically start plotting the reference graphs after the initialization process has been completed. See page 63.

SUb

(substitute configuration, without initialization)

A complete initialization procedure takes several minutes and requires the valve to move through its entire travel range several times. In the event a positioner must be replaced while the plant is running, this mode allows the replacement to be performed with the minimum amount of disruption to the plant.

This initialization mode is an emergency mode. The positioner parameters are estimated and not determined by an initialization procedure, so that a high stationary accuracy cannot be expected.

You should always select a different initialization mode if the plant allows it.

The initialization mode **SUb** is used to replace a positioner while the process is in operation. For this purpose, the control valve is

usually fixed mechanically in a certain position, or pneumatically by means of a pressure signal which is routed to the actuator externally. The blocking position ensures that the plant continues to operate with this valve position.

The spare positioner should not be initialized. If necessary, reset the spare positioner using Code **36**.

After the old positioner has been replaced with a new one, the following parameters must be entered: pin position (Code 4), nominal range (Code 5), direction of action (Code 7) and closing direction (Code 34). The default travel limit of 100 % (Code 11) must be disabled with OFF.

In addition, the blocking position (Code *35*) must be adjusted with the button so that it matches the position of the previously blocked valve.

The parameters K_P (Code 17), T_V (Code 18) and the pressure limit (Code 16) should remain set to their default values. If the configuration data of the new positioner are known, it is recommended to accept its K_P and T_V values.

After defining the valve closed position with the AIR TO OPEN/CLOSE switch, setting the volume restriction and pressing the INIT key, the positioner calculates its configuration data on the basis of the blocking position and the closing direction as well as the other entered data.

The positioner switches to manual operation, subsequently the blocking position should be canceled as described on page 69.

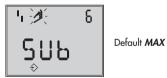
Start-up and settings

Enable configuration:

Turn $\Theta \to \mathsf{Code} \ \mathbf{3}$, press Θ , turn $\bigoplus \rightarrow ON$, press \bigoplus .

After enabling:

Turn $\bigoplus \rightarrow \mathsf{Code} \, \mathbf{4}$, press \bigoplus ,


turn $\begin{tabular}{l} \begin{tabular}{l} \begin$

Turn $\bigoplus \rightarrow \mathsf{Code} \, \mathbf{5}$, press \bigoplus ,

turn \bigoplus \rightarrow Enter nominal travel/angle,

press .

Turn $\bigoplus \rightarrow \mathsf{Code} \, \boldsymbol{6}$, press \bigoplus ,

turn $\Theta \to SUb$, press Θ .

Default 77

Turn $\bigoplus \rightarrow \mathsf{Code} \, \mathbf{7}$, press \bigoplus ,

turn $\bigoplus \rightarrow \text{Retain direction of action } 77 \text{ or}$ select 7131.

Press 🕀

Turn $\bigoplus \rightarrow \mathsf{Code} \; 11$, press \bigoplus ,

turn [®] → Deactivate travel limit, press 🕀 .

Turn \bigoplus \rightarrow Code **16**.

Retain default value for pressure limit, change value only if necessary.

Turn $\bigoplus \rightarrow \mathsf{Code} \ 17$

Retain default. Proceed as follows only if known:

Press \Box,

turn $\bigoplus \rightarrow \text{Select } K_{P}$. press 🕾 .

Default 2

Turn $\bigoplus \rightarrow \mathsf{Code} \; 18.$

Retain default Ty, change only if known.

Default CCL

Turn \bigoplus \rightarrow Code **34**, press \bigoplus .

turn \bigoplus \rightarrow Select closing direction.

CCL = counterclockwise and CL = clockwise.

Direction of rotation which causes the valve to move to the CLOSED position (view onto the rotary switch movement while positioner cover is open).

Press 🕀

Default 0.0

Turn $\bigoplus \rightarrow \mathsf{Code} \ 35$, press \bigoplus .

turn \bigoplus \rightarrow Enter blocking position, e.g. 5 mm (read off at travel indicator scale of the blocked valve or measure with a ruler).

Press .

- Set switch for valve closed position AIR TO OPEN or AIR TO CLOSE as described in section 5.1 on page 51.
- Set volume restriction as described in section 5.2 on page 59.
- Press INIT key.

The positioner switches to manual operating mode!

The adjusted blocking position is indicated

As initialization has not been carried out completely, the error code 76 (no emergency mode) and possibly also error code 57 may appear on the display. These alarms do not influence the positioner's readiness for operation.

Canceling the blocking position

For the positioner to follow its reference variable again, the blocking position must be canceled and the positioner must be set to automatic operation AUtO as follows:

Turn $\bigoplus \rightarrow \mathsf{Code} \; \mathbf{1}$, press \bigoplus ,

turn 1 in order to move the valve slightly past the blocking position, then cancel mechanical blocking.

Press 🕅

Turn $\bigoplus \rightarrow \mathsf{Code} \ \mathbf{0}$, press \bigoplus , Code O blinks

Turn until **AUtO** appears on the display.

Press to confirm the operating mode.

The positioner switches to automatic operating mode!

The current valve position is indicated in %.

Note: If the positioner shows a tendency to oscillate in automatic operating mode, the parameters K_P and T_V must be slightly corrected. Proceed as follows:

Set T_V to 4 (Code 18).

If the positioner still oscillates, the gain K_P (Code 17) must be decreased until the positioner shows a stable behavior.

Zero point calibration

Finally, if process operations allow it, the zero point must be adjusted according to section 5.8 on page 71.

CAUTION!

The positioner automatically moves to zero point.

5.7 Fault/failure

All status and fault alarms are assigned a classified status in the positioner.

To provide a better overview, the classified alarms are summarized in a condensed status for the positioner (see section 6).

The condensed status appears on the display with the following icons:


Condensed status	Display
Maintenance alarm	•
Maintenance required/ Maintenance demanded	ß
Function check	Text
No message	

If the positioner has not been initialized, the diagnostic alarm "Device not initialized" is generated. The symbol appears on the display as the positioner cannot follows its reference variable.

To access the error codes, turn the 🕙 button past the Code 50.

Err appears on the display with the respective error code.

For the cause of the fault and the recommended action, refer to the codes listed in section 15.1 on page 111 onwards.

Display indicating an error code

After an error code has occurred, you should first try to confirm it as follows:

Enable configuration:

Turn $\bigoplus \rightarrow \mathsf{Code} \; \mathbf{3} \;$, press $\bigoplus ,$

turn $\bigoplus \rightarrow ON$, press \bigoplus .

Turn 🕲 until the error code number appears, then press to confirm it.

Should the error occur again, read the remedy instructions in the error code list.

Occurrences such as when the total valve travel is exceeded or when the temperature leaves the permissible temperature range affect the condensed state and cause a fault alarm to be displayed depending on its classification.

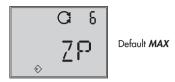
The optional EXPERT+ diagnostics generates additional diagnostic alarms which are included in the condensed status with their corresponding status classification.

When a diagnostic alarm is issued by EXPERT+, this is displayed by Code 79 (see error code list).

5.8 Zero calibration

In case of discrepancies with the closing position of the valve, e.g. with soft-sealed plugs, it may be necessary to recalibrate the zero point.

Note: We recommend re-initializing the positioner in case of deviations in the zero point over 5 %.


Enable configuration:

Default OFF

Turn $\Theta \to \mathsf{Code} \ \mathbf{3}$, press Θ , turn $\Theta \to \mathbf{ON}$, press Θ .

After enabling:

Turn $\bigoplus \rightarrow \mathsf{Code} \, \boldsymbol{6}$, press \bigoplus , turn $\bigoplus \rightarrow \boldsymbol{ZP}$, press \bigoplus .

Press INIT key.

Zero calibration is started, the positioner moves the control valve to the CLOSED position and readjusts the internal electrical zero point.

The valve briefly moves from the current travel/angle of rotation position to the closed position.

5.9 Reset to default values

This function resets all parameters to the factory default values (see code list in section 15.1).

Enable configuration:

Turn $\bigoplus \rightarrow \mathsf{Code}\ 3$, press \bigoplus , turn $\bigoplus \rightarrow ON$, press \bigoplus .

After enabling:

Turn \bigoplus \rightarrow Code **36**, press \bigoplus . turn $\bigoplus \rightarrow RUN$, press \bigoplus .

All control parameters are reset and can be reconfigured.

Note: Reset the control and identification parameters as well as the bus address with the FACTORY RESET parameter (see page 134).

Start-up via local interface 5.10 (SSP)

The positioner can either be commissioned, configured, and operated on site, using the Fieldbus configuration or operating system, or TROVIS-VIEW operator interface connected over the serial interface in the positioner.

Use the TROVIS-VIEW software with 3730-4 device module installed.

To connect the positioner directly to the PC via the local serial interface, an adapter (order no. 1400-7700) is required.

The positioner can be supplied with power by connecting it either to a fieldbus segment or over a DC voltage source (9 to 32 V) connected to the bus terminals in the positioner. A suitable intrisically safe source mut be used within the hazardous area and the safe area when an intrinsically safe positioner is used.

The simultaneous operation of TROVIS-VIEW and the fieldbus system is possible without any restrictions when connected to a PROFIBUS-PA segment.

Setting the bus address 5.11

A maximum of 32 positioners in a safe (non-hazardous) area can be operated over a segment coupler in one PROFIBUS-PA segment.

Each positioner connected in the segment must be assigned a unique bus address between 0 and 125.

Enable configuration:

Turn $\bigoplus \rightarrow \mathsf{Code} \; 3$, press \bigoplus , turn $\bigoplus \rightarrow ON$, press \bigoplus .

After enabling:

Turn \otimes \rightarrow Code **46**, press \otimes , turn \bigoplus \rightarrow required address,

press 10 10 seconds \rightarrow The address is adopted straightaway, provided that cyclic data exchange is **not** taking place. During the cyclic data exchange, the newly set address for the positioner is saved and adopted after the cyclic data exchange is finished.

The newly assigned address is indicated under Code 46 in alternating sequence with the current address. The new address is marked with "n" (new) and the currently used address with "o" (old).

Note: The bus address can only be implemented by the PROFIBUS command SET ADRESS when the bus address is set to the default setting [126].

6 Status and diagnostic alarms

The Type 3730-4 Positioner contains integrated diagnostics to generate classified status and diagnostic alarms.

There are two different types of on-board diagnostics available: the standard integrated diagnostics (EXPERT) and the optional extended EXPERT+ diagnostics.

The generated alarms can be classified and summarized according to the PROFIBUS Profile 3.01 and the extension "Condensed status and diagnostic messages" (refer to section 14.5 on page 104).

Standard EXPERT 6.1 diagnostics

The standard EXPERT diagnostics provides information about positioner states such as operating hours counter, process monitoring, number of zero calibrations and initializations, total valve travel, temperature, initialization diagnostics, zero/control loop errors, logging of the last 30 alarms, etc. In addition, the standard EXPERT diagnostics generates diagnostic and status alarms which allow faults to be pinpointed quickly when a fault occurs.

In addition to the alarms being displayed on the positioner display, the classified alarms are also available over PROFIBUS-DP. Status alarms are classified as follows:

- Status
- Operation
- Hardware
- Initialization
- Data memory
- **Temperature**

6.2 Extended EXPERT⁺ diagnostics

In addition to the standard EXPERT diagnostic features, the optional EXPERT+ extended diagnostics provides the following in-service monitoring and out-of-service tests which enable significant statements on the condition of the entire control valve

In-service monitoring (statistical information)

- Data logger
- Histograms
- Cycle counter
- Valve end position trend
- y = f(x) diagram (drive signal)
- Hysteresis test

Out-of-service tests (tests)

- y = f(x) diagram over the full range of the valve
- Hysteresis test over the full range of the válve
- Static characteristic
- Step response test

The diagnostic tests are completely integrated in the positioner. The PROFIBUS-DP allows parameters to be entered and test results to be read. The graph readings depend on the process control system used.

Further status alarms are generated from the extensive information gained in the diagnostic tests of EXPERT+ which provide the user with information covering the whole control valve.

The required reference graphs are automatically plotted after initialization and saved in the positioner if EXPERT+ is activated.

The optional diagnostic functions provided by EXPERT+ can be selected when ordering the positioner. Additionally, it is possible to activate EXPERT+ at a later point in time in an existing positioner. For this purpose, an activation code can be ordered, requiring the serial number of the positioner to be specified.

6.3 Classification of the status alarms and the condensed status

Note: The following description only applies to positioners configured corresponding to the Profile 3.01 with the extension "Condensed status and diagnostic messages" (adjustable in COND STATUS DIAG parameter of the Physical Block).

The alarms are classified in the positioner, i.e. when an alarm is issued, it is assigned a status. The classification of the states can be changed.

To provide a better overview, the positioner state is summarized in a condensed state. This condensed state is made up from a summary of all classified status alarms.

If an event is classified as "No message", this event has no influence on the condensed status. If the classification "No message" is assigned for a diagnostic alarm, this alarm is not included in the diagnostic parameter. To be able to read all diagnostic alarms regardless of which classification they have

been assigned to, these are entered in DIAGNOSIS EXT 1 RAW and DIAGNOSIS EXT 2 RAW parameters.

The following states can be selected (refer to Fig. 25):

Maintenance alarm

The positioner cannot perform its control task due to a functional fault in the device or in one of its peripherals or an initialization has not yet been successfully completed.

Maintenance required

The positioner still performs its control task (with restrictions). A maintenance demand or above average wear has been determined. The wear tolerance will soon be exhausted or is reducing at a faster rate than expected. Maintenance is necessary in the medium term.

Maintenance demanded

The positioner still performs its control task (with restrictions). A maintenance demand or above average wear has been determined. The wear tolerance will soon be exhausted or is reducing at a faster rate than expected. Maintenance is necessary in the short term.

Process related fault/Out of specification

The current process conditions do not allow a valid calculation of values.

Function check

Test or calibration procedures are being performed. The positioner is temporarily unable to perform its control task until this procedure is completed.

Status and diagnostic alarms

The table below containing the condensed state is reached from the summary of active alarms.

Status modification

The classification of the status alarms can be assigned as required using the TROVIS-VIEW software connected to the local SSP interface of the positioner or over the PA parameters.

CAUTION

All extended alarms issued by the EXPERT diagnostics are assigned the "No message" status.

Logging and displaying diagnostic functions/alarms

The last 30 alarms are logged in the positioner. An alarm that is repeated is only logged when it first occurs.

The alarms and the condensed state appear on the display as described in the code list (section 15.1). In addition, the diagnostic parameters are available over the communication interface of the positioner.

The diagnostic functions can easily be displayed and configured using the TROVIS-VIEW software connected over the local interface (SSP) or over PROFIBUS.

Condensed state

Status alarm	Engineering tool/ TROVIS-VIEW (version 3.40 and higher)	Positioner display
No message, ok	✓ green	
Function check	orange	tEsting, tunE or tEst
Maintenance required Maintenance demanded	blue	ß
Process related fault Out of specification	<u> </u>	
Maintenance alarm	red	4

7 Adjusting the limit switch

The positioner version with an inductive limit switch has one adjustable tag (1) mounted on the shaft which operates the proximity switch (3).

For operation of the inductive limit switch, the corresponding switching amplifier (see section 3.2.1) must be connected to the output.

If the tag (1) is inside the field of the switch, the switch assumes a high resistance. If the tag is outside of the field, the switch assumes a low resistance.

Normally, the limit switch is adjusted such that it will provide a signal in both end positions of the valve. The switch, however, can also be adjusted to indicate intermediate valve positions.

The desired switching function, i.e. whether the output relay shall be picked up or released when the tag has entered the field, has to be determined, if necessary, at the switching amplifier.

Setting the switching point:

Note: During adjustment or testing, the switching point must always be approached from mid-position (50 %).

To ensure safe switching under any ambient conditions, the switching point should be adjusted to a value of approx. 5 % before the mechanical stop (OPEN – CLOSED).

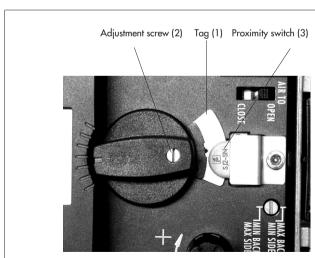


Fig. 26 · Adjustment of the limit switch

For CLOSED position:

- 1. Initialize positioner.
- 2. Use the MAN function to move the positioner to 5 % (see LC display).
- 3. Adjust the tag using the yellow adjustment screw (2) until the tag enters or leaves the field and the switching amplifier responds. You can measure the switching voltage as an indicator.

Contact function:

Tag leaving the field > contact is made. Tag entering the field > contact is opened.

For OPEN position:

- 1. Initialize positioner.
- 2. Use the MAN function to move the positioner to 95 % (see LC display).
- 3. Adjust the tag (1) using the yellow adjustment screw (2) until the tag enters or leaves the field of the proximity switch

You can measure the switching voltage as an indicator.

Contact function:

Tag leaving the field > Contact is made. Tag entering the field > Contact is opened.

Quick start-up guide 8

8.1 Mounting

Direct attachment to SAMSON Type 3277 Actuator

Travel mm	Actuator cm ²	Pin position
7.5	120	25
15	120/175/240 /350	35
15/30	700/750	50

Note: Standard delivery includes lever M ready assembled with the follower pin on 35 mm pin position for 15 mm travel!

To mount the positioner, lift the lever so that the follower pin rests on the follower clamp of the actuator stem.

NAMUR attachment

- Determine the maximum travel range of the control valve from the closed position to as far it will go in the other direction.
- Select the lever to match the maximum travel range as well the next largest pin position and screw onto the shaft of the positioner.
- Lever option/pin distance: see pin position table (Code 4) or cover plate on the positioner.
- Screw the NAMUR bracket onto the valve yoke so that it is aligned centrally to the slot of the follower plate when the travel position is at 50 %.
- Secure the positioner to the NAMUR bracket, making sure that the follower

pin is in the slot of the follower plate. Make sure the lever can still move.

Attachment to rotary actuators

- Lever M pin position 90°
- Put the valve into the closed position, determine the opening direction.
- Place the follower plate on the slotted actuator shaft and fasten it to the coupling wheel. Attach the top pair of brackets and the bottom pair of brackets to the actuator.
- Place the positioner on the brackets and screw tight, making sure that the lever with its follower pin engages the slot of the coupling wheel, while taking into account the opening direction. It is important to make sure that the lever's mid position corresponds to the mid travel of the valve (lever's mid position = the lever is parallel to the long side of the positioner housing).

Pneumatic connections

Screw the threaded parts only into the attached connection block, connecting plate or pressure gauge block from the accessories.

8.2 Start-up

- Connect pneumatic supply air (1.4 to 6 bar).
- Route the two-wire bus line to the screw terminals marked "IEC 1158-2", a particular polarity does not need to be observed.

Alternatively, the power supply for the positioner can be supplied over a DC voltage source (9 to 32 V) connected to the bus terminals in the positioner.

You are required to observe the relevant regulations for use in hazardous areas.

Set the valve closed position

Position the slide switch according to closed position of the control valve: AIR TO OPEN or AIR TO CLOSE.

Adapt the volume restriction Q to the actuator size

Only set the restriction for actuators $< 240 \text{ cm}^2 \text{ to}$:

MIN SIDE for connection at the side or MIN BACK for connection at the back.

NOTICE

After each change of the volume restriction setting, the positioner must be re-initialized.

Changing the reading direction of the display

(if necessary)

Turn $\bigoplus \rightarrow \mathsf{Code} \ \mathbf{2}$, press \bigoplus ,

turn $\bigoplus \rightarrow \text{Display OK, press} \bigoplus$.

Operation

Selecting the parameters or values

Each parameter has a code number which is shown in the display.

Turn the button to select parameters or values and then **push** to confirm.

Select and confirm **ESC** to prevent an entered value from being accepted.

Enabling parameters

Parameters that have a code marked with an asterisk (*) can only be changed when they are enabled beforehand using Code 3.

The configuration mode is shown in the display with the \Rightarrow symbol.

See the code list on page 111 onwards or cover plate of the positioner for a description of the menu codes.

Initialization 8.3

Important!

Perform a reset (Code 36) prior to each initialization

Turn
$$\bigoplus$$
 \rightarrow Code 3 , \bot

turn
$$\bigoplus$$
 \rightarrow Code **36**, \downarrow

select RUN, ↓

NOTICE

During initialization, the valve moves through its whole range of travel/angle of rotation.

Simplest method (MAX) 8.3.1

Mount and start up the positioner and press the **INIT key!**

READY!

The positioner adapts itself automatically to the maximum travel/angle of rotation range of the control valve.

8.3.2 Precise method (NOM)

Positioner adapts itself precisely to the nominal travel/rotational anale of the control valve!

Mount and start up the positioner, then proceed as follows:

Turn
$$\bigoplus$$
 \rightarrow Code **3**. \downarrow

turn
$$\bigoplus \rightarrow ON$$
. \downarrow

Retrofitting an inductive limit switch

turn ⊕ → Code **4**. ↓

turn \bigoplus \rightarrow Select pin position, \bot

turn \bigoplus \rightarrow Code **5**. \downarrow

turn \bigoplus \rightarrow Enter nominal travel/range, \rightarrow

turn \bigoplus \rightarrow Code **6**. \downarrow

select NOM. ~

Press INIT key!

8.3.3 Manual method (MAN)

Initialization mode same as **NOM**, but for start-up of control valves with unknown nominal ranges. The final position of travel/angle of rotation (valve open) is entered manually.

Mount and start up the positioner, then proceed as follows:

Turn $\bigoplus \rightarrow \mathsf{Code} \ \mathbf{0}$. \rightarrow .

turn \bigoplus \rightarrow select *MAN*, \bot

turn $\bigoplus \rightarrow \mathsf{Code} \ 1. \ \bot.$

turn \bigoplus \rightarrow valve **open** position, \downarrow

turn $\bigoplus \rightarrow \mathsf{Code} \; \mathbf{3}, \, \bot$

turn $\bigoplus \rightarrow ON$. \rightarrow

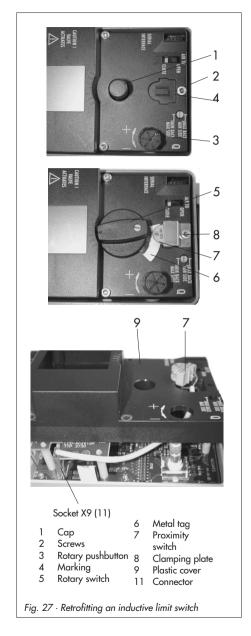
turn $\bigoplus \rightarrow \mathsf{Code}\ \boldsymbol{6}$, \dashv , select MAN , \dashv

Press INIT key!

Note: After applying the electrical reference variable, the positioner is in the last used operating mode. Code 0 appears in the display. If the positioner has not yet been initialized, the symbol appears on the display and the A symbol blinks.

Retrofitting an inductive 9 limit switch

Required retrofit kit:


Limit switch Order no. 1400-7460

Note: The same requirements apply to retrofitting an inductive limit switch as to servicing the positioner. For explosion-protected devices, the requirements in section 11 need to be kept.

Check the "Limit switch, inductive" box on the nameplate after retrofitting the limit switch.

- 1. Take off the rotary pushbutton (3) and cap (1), unthread the five fixing screws (2) and lift off the plastic cover (9) together with the display, taking care not to damage the ribbon cable (between PCB and display).
- 2. Use a knife to cut an opening at the marked location (4).
- 3. Push the connector (11) with cable through the opening and secure the proximity switch (7) on the cover with a dot of alue.
- 4. Insert the cable connector (11) at the socket X9.
- 5. Guide the cable in such a manner that the plastic cover can be placed back onto the positioner. Insert the fixing screws (2) and screw tight. Attach the clamping plate (8) onto the proximity switch.
- 6. Attach the rotary switch (5). Make sure the flattened side of the positioner shaft is turned so that the rotary switch (5) can

- be attached with the metal tag next to the proximity switch.
- 7. Note: On start-up of the positioner, set the option "inductive alarm" under Code 38 from NO to YES.

10 Maintenance

The positioner does not require any maintenance.

There are filters with a 100 µm mesh size in the pneumatic connections for supply and output which can be removed and cleaned, if required.

The maintenance instructions of any upstream supply air pressure reducing stations must be observed

11 Servicing explosionprotected devices

If a part of the device on which the explosion protection is based needs to be serviced, the device must not be put back into operation until a qualified inspector has assessed it according to explosion protection requirements, has issued an inspection certificate or given the device a mark of conformity.

Inspection by a qualified inspector is not reguired if the manufacturer performs a routine test on the device prior to putting it back into operation. The passing of the routine test must be documented by attaching a mark of conformity to the device. Replace explosion-protected components only by original, routine-tested components from the manufacturer.

Devices that have already been operated outside hazardous areas and are intended for future use inside hazardous areas must comply with the safety requirements placed on serviced devices. Before being used inside hazardous areas, test the devices according to the specifications for servicing explosion-protected devices.

Read section 13 for maintenance, calibration and adjustment work inside and outside hazardous areas.

12 Firmware update (serial interface)

Firmware updates on positioners currently in operation can be performed as follows:

When updates are performed by a service employee appointed by SAMSON, the update is confirmed on the positioner by the test mark assigned by SAMSON's Quality Assurance.

In all other cases, only persons from the plant operator with written approval may perform updates. This person must confirm the update on the positioner.

Laptops and PCs connected to the power supply must use an additional safety barrier.

This does not apply to laptops in battery operation. In this case, it is assumed that a battery-powered laptop runs briefly for software programming or for testing purposes.

a) Updates outside the hazardous area:

Remove the positioners from the plant and update them outside the hazardous area.

b) Updates on site:

Updates on site are only permitted after the plant operator has presented a signed hot work permit.

After updating has been completed, add the current firmware to the nameplate; this can be done using labels.

13 Maintenance, calibration and work on equipment

The interconnection with intrinsically safe circuits to check or calibrate the apparatus must only be performed with intrinsically safe current/voltage calibrators and measuring instruments to rule out any damage to components relevant for explosion protection.

The maximum values for intrinsically safe circuits specified in the approvals must be kept.

The PROFIBUS-PA is a version for process automation based on the widely used PROFIBUS-DP. The transmission technique conforms with the IEC 61158-2 Standard and therefore fulfills the requirements for the type of protection, intrinsic safety.

PROFIBUS-DP defines two types of masters:

- Class 1 master exchanges the data with the configured slaves.
- Class 2 master is used for acyclic data exchange for commissioning and diagnostics purposes.

Profile 14.1

Basic device functions have been described in profiles by PNO (PROFIBUS user organization) to supplement the EN 50170 standard.

The scope of functions of the Type 3730-4 Positioner is consistent with Profile 3.01 with the extension "Condensed status and diagnostic messages V1.0".

14.2 Cyclic data exchange

Cyclically transmitted parameters

The following parameters that are transmitted in cyclic data transfer are marked with an asterisk (*) in the parameter lists from page 130 onwards.

POS D

Current position of the valve (discrete)

- 0: Not initialized
- 1: Closed (x < 0.5 %)
- 2: Open (x > 99.5 %)
- 3: Intermediate position

RCAS IN

Setpoint with status: Reference variable w in RCAS mode

Provided by a supervisory host, e.g. PID Block or master class 1. Depending on the mode of the function block.

Range of values defined in PV SCALE

RCAS OUT

Setpoint with status: Reference variable w in RCAS mode

Provided to a supervisory host, z. B. PID Block or master class 1. Depending on the mode of the function block.

Range of values defined in PV SCALE

READBACK

Current position of the valve and status Controlled variable x in relation to travel range/anale of rotation (OUT SCALE) Range of values defined in PV SCALE

The setpoint SP is transmitted to the positioner. Defines the position of the valve between open and closed.

Range of values defined in PV SCALE

DI OUT

Output of the DI Function Block

Status of device and measured value

Checkback

Refer to section 14.3 for device status.

Status

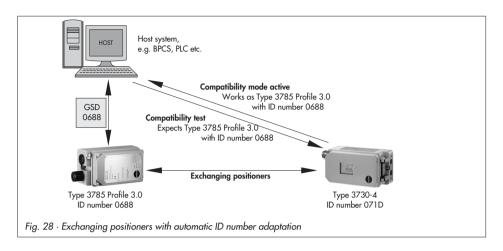
Consistent with the PROFIBUS-PA Profile, a status is assigned to every process value

Status of reference variable (hex):

0-3fBad

40-7f Uncertain

80-bf Good


Refer to section 14.4 for measured value status.

14.2.1 GSD files

The General Station Description file (GSD file) is included in the scope of delivery for every PROFIBUS positioner and supplies all information required for the cyclic exchange of process data (set point, status, etc.) with the host system and for configuring the PROFIBUS network. Each positioner and its GSD file has a unique ID number (ident number) assigned to it. This allows the host to check the compatibility between the configuration in the system and the device used.

The ID number (ident number) of the GSD file must be the same as the ID number of the device to ensure successful integration.

The ID number adaptation feature allows a Type 3785 Positioner to be replaced by a Type 3730-4 Positioner without having to exchange the GSD file in the host system.

The host performs a compatibility test by checking the configured GSD file/ID number before starting cyclic data exchange. If the positioner is in the compatibility (adaptation) mode, the positioner also accepts the GSD files/ID numbers of the Type 3785 Positioner (Profile 2.0 and 3.0) and goes into cyclic data exchange.

For communication with the automation system, just the features of the active positioner (active ID number) are supported.

Example: If the Type 3730-4 Positioner is operated in the compatibility (adaptation) mode for Type 3785 Profile 3.0, the diagnosis telegram then communicates as with Type 3785. Diagnosis bits, which were first introduced with Profile 3.01, are not set. Additionally, the DI Blocks of Type 3730-4 cannot be used as they are not available in Type 3785.

When replacing the Type 3785 Positioner with the Type 3730-4 Positioner, the following steps must be taken:

NOTICE

- The Type 3730-4 Positioner must be mounted and connected properly (see sections 2 and 3.)
- Configuration over PROFIBUS must be performed with the associated EDD or DTM of Type 3730-4 as this is the only way to access the device parameters.

- Change the bus address of Type 3730-4 to the same bus address as Type 3785. This
 can be done over PROFIBUS (DEVICE_ADDRESS parameter), using TROVIS-VIEW
 configuration and operator interface or in Code 46 in the positioner.
- 2. Put positioner into operation (see section 5).

Note: After initialization (in step 2), the positioner is in compatibility (adaptation) mode (IDENT_NUMBER_SELECTOR parameter in the Physical Block). Do not change this setting.

14.2.2 Data exchange

The relationship between output and input is based on the control system/master class 1.

SLOT 1

Version 1: Module = SP 0x4A or 0x82, 0x84, 0x08, 0x05

Output

Byte 0	1	2	3	4
Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5
Exponent	Fraction	Fraction	Fraction	Fraction
Lxponeni	Traciion	Truchon	Truchon	Truction

Version 2: Module = RCAS_IN, RCAS_OUT 0xC4, 0x84, 0x84, 0x08, 0x05, 0x08, 0x05

Output

Byte 0	1	2	3	4
Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5
Exponent	Fraction	Fraction	Fraction	Fraction
	Status			

Input

Byte 0	1	2	3	4
Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5
Exponent	Fraction	Fraction	Fraction	
	Status			

Version 3: Module = SP, READBACK + POS_D 0xC6, 0x84, 0x86, 0x08, 0x05, 0x08, 0x05, 0x05

Output

Byte 0	1	2	3	4
Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5
Exponent	Fraction	Fraction	Fraction	Fraction
	Status			

Input

Byte 0	1	2	3	4	5	6
Octet 1 Sign, Exponent	Octet 2 Exponent Fraction	Octet 3 Fraction	Octet 4 Fraction	Octet 5	Octet 1	Octet 2
READBACK, value (Floating Point, IEEE)				Status	POS_D value	POS_D status

Version 4: Module = SP, CHECKBACK 0xC3, 0x84, 0x82, 0x08, 0x05, 0x0A

Output

Byte 0	1	2	3	4
Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5
I - " .	F '		F (*)	F (*)
Exponent	Fraction	Fraction	Fraction	Fraction

Input

Byte 0	1	2
Octet 1	Octet 2	Octet 3
CHECK_ BACK[0]	CHECK_ BACK[1]	CHECK_ BACK[2]

Version 5: Module = SP, READBACK + POS_D + CHECKBACK 0xC7, 0x84, 0x89, 0x08, 0x05, 0x08, 0x05, 0x05, 0x05, 0x0A

Output

Byte 0	1	2	3	4
Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5
Exponent	Fraction	Fraction	Fraction	Fraction
	Status			

Input

Byte 0	1	2	3	4	5	6	7	8	9
Octet 1 Sign, Exponent	Octet 2 Exponent Fraction	Octet 3	Octet 4 Fraction	Octet 5	Octet 1	Octet 2	Octet 1	Octet 2	Octet 3
LAPONEIII	READBAG		Traction	Status	POS_D value	POS_D status	CHECK_ BACK[0]	CHECK_ BACK[1]	CHECK_ BACK[2]

Version 6: Module = RCAS_IN, RCAS_OUT + CHECKBACK 0xC5, 0x84, 0x87, 0x08, 0x05, 0x08, 0x05, 0x0A

Output

Byte 0	1	2	3	4			
Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5			
Exponent	Fraction	Fraction	Fraction	Fraction			
	RCAS_IN, value (Floating Point, IEEE)						

Input

Byte 0	1	2	3	4	5	6	7
Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5	Octet 1	Octet 2	Octet 3
Exponent	Fraction	Fraction	Fraction	Fraction			
RCAS_OUT, value (Floating Point, IEEE)			Status	CHECK_ BACK[0]	CHECK_ BACK[1]	CHECK_ BACK[2]	

Version 7: Module = SP + RCAS_IN, READBACK + RCAS_OUT + POS_D + CHECKBACK 0xCB, 0x89, 0x8E, 0x08, 0x05, 0x08, 0x05, 0x08, 0x05, 0x08, 0x05, 0x08, 0x05, 0x0A

Output

Byte 0	1	2	3	4	5	6	7	8	9
Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5	Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5
Exponent	Fraction	Fraction	Fraction	Fraction	Exponent	Fraction	Fraction	Fraction	Fraction
SP, value (Floating Point, IEEE)			Status		RCAS_II (Floating F	N, value Point, IEEE)		Status	

Input

Byte 0	1	2	3	4	5	6	7	8	9
Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5	Octet 1 Sign,	Octet 2 Exponent	Octet 3	Octet 4	Octet 5
Exponen	t Fraction	Fraction	Fraction	Fraction	Exponent	Fraction	Fraction	Fraction	Fraction
		CK, value Point, IEEE)		Status	RCAS_OUT, value (Floating Point, IEEE)				Status
Byte 10	11	12	13	14					
Octet 1	Octet 2	Octet 1	Octet 2	Octet 3					
POS_D Value	POS_D Status	CHECK_ BACK[0]	CHECK_ BACK[1]	CHECK_ BACK[2]					

SLOT 2, 3

Version 1: Module = Discrete Input (DI) 0x91

Input

Byte 0	1		
Octet 1	Octet 2		
Value	State		
DI_OUT	DI_OUT		
Value	Status		

14.2.3 Integration for PCS7 control system

The following steps must be observed on integrating the positioner into a Simatic S7 control system to ensure that the positioner functions properly:

- 1. The module in Slot 1 can be read out over the function component SFC 14 "DPRD_DAT" and, for example, assigned to a data module.
- 2. Existing modules in Slot 2 and/or Slot 3 need to be allocated over the MOVE command as the use of SFC 14 is not permissible in this case.

Note: Data consistency is first provided from a data length of 3 bytes or 5 bytes. Use the MOVE command for data types BYTE, WORD and DWORD. If the SFC 14 is to be used over several slots, do not forget that the data length is always to be regarded for each slot separately!

14.2.4 General instructions to start up the positioner

The positioner remains in the fail-safe position until it receives a valid setpoint from the process control system (status < 0x80). **S** blinks on the positioner display to indicate that the positioner is in the fail-safe position (see page 55). First when a valid set point (status $\ge 0x80$) is set, the positioner leaves the fail-safe position and follows the reference variable.

14.3 CHECKBACK - Device status

Each bit can be masked individually for cyclic communication per class 2 master. This allows a targeted selection to be made from the existing alarms.

Byte	Bit	Name	Description	
0	0	CB_FAIL_SAFE	Fail-safe position: The fail-safe position has been triggered. This may have been caused by the local operation, activation of the SET_ FAIL_SAFE_POS option or due to a communication failure.	R
	1	CB_REQ_LOC_OP	Request for local operation: This is set when the initialization key of the local operation is activated.	Α
	2	CB_LOCAL_OP	Local operation:	
			The device has been set by the local operation into the MAN or SAFE mode.	
			The device is in the self-testing mode (initialization, zero point calibration or diagnostic function active). In this case, the CB_SELFTEST bit is also set.	

Byte	Bit	Name	Description	
0	3	CB_OVERRIDE	Operating voltage for the optional built-in solenoid valve failed: The positioner cannot function and moves to the fail-safe position determined by the actuator, regardless of the reference variable.	R
	46	Not assigned		
	7	CB_TRAVE_TIME	Control loop error: The control valve no longer follows the controlled variable in the tolerable times (see error code 57 on page 123). This alarm is reset after 10 seconds. The message CHECKBACK byte 1 bit 5 remains, in contrast, until it is confirmed.	A
1	01	Not assigned		
	2	CB_UPDATE_EVENT	Static data changed: This is set when the device data have been changed, resulting in the control of (unintended/unauthorized) changes from the originally set values.	A
	3	CB_SIMULATE	Simulation mode active: This is set when the simulation mode of at least one Function Block is active. The simulation mode of the AO Function Block allows the controlled variable x to be simulated. The simulation mode of the DI Function Block allows the discrete output to be simulated.	R
	4	Not assigned		
	5	CB_CONTR_ERR	Control loop error: The control valve no longer follows the controlled variable in the tolerable times (see error code 57 on page 123). The error must be reset manually.	R
	6	CB_CONTR_INACT	Positioner inactive: This is set when the device is in the OUT OF SERVICE mode or the output of the AO Function Block has a bad status.	R
	7	CB_SELFTEST	Device is in self-testing mode: This is set when the initialization routine, the zero point calibration or a diagnostic function of the extended EXPERT+ valve diagnostics is active.	R

Byte	Bit	Name	Description	
2	0	CB_TOT_VALVE_TRAV	Limit value for total valve travel exceeded: The current value for the total valve travel is above the entered or predetermined limit. Reset over SELF_CALIB_CMD = 10 (Reset Total valve travel limit exceeded).	R
	1	CB_ADD_INPUT	Status of the second optional integrated binary input: The use of the second binary input must be configured correspondingly with CONFIG_BINARY_INPUT2.	
	27	Not assigned		
	7	CB_ZERO_POINT_ERROR	Zero point error (see error code 58 on page 123)	R

R Static alarm remains active as long as the reason for the alarm still exists in the device

14.4 Status coding of measured values

The COND_STATUS_DIAG parameter in the Physical Block allows you to select whether the measured value status is communicated according to the Profile 3.01 or according to the Condensed Status extension.

14.4.1 Status alarm according to Profile 3.01

Fault/diagnostic alarm	Value (hex)	Status alarm acc. to Profile 3.01	
Operational errors			
Device not initialized		0x1C	BAD_OUT_OF_SERVICE
Solenoid valve active		0x80	GOOD_NON_SPECIFIC
Total travel exceeded		0xA4	GOOD_MAINT_REQ
Control loop error		0x4A	GOOD_MAINT_REQ
Zero point error		0xA4	GOOD_MAINT_REQ
Autocorrection		0x80	GOOD_NON_SPECIFIC
Fatal error		0x0C	BAD_DEVICE_FAILURE
No emergency mode		0xA4	GOOD_MAINT_REQ
Reference test aborted		0x80	GOOD_NON_SPECIFIC
Temperature < −40 °C		0x80	GOOD_NON_SPECIFIC
Temperature > 80 °C		0x80	GOOD_NON_SPECIFIC

A Dynamic alarm is automatically set after 10 seconds

Fault/diagnostic alarm	Value (hex)	Status alarm acc. to Profile 3.01
Initialization errors		
x > range	0x80	GOOD_NON_SPECIFIC
Delta x < range	0x80	GOOD_NON_SPECIFIC
Incorrect attachment (mechanics/pneumatics)	0x80	GOOD_NON_SPECIFIC
Initialization time exceeded	0x80	GOOD_NON_SPECIFIC
Initialization/solenoid valve	0x80	GOOD_NON_SPECIFIC
Transit time too short	0x80	GOOD_NON_SPECIFIC
Pin position	0x80	GOOD_NON_SPECIFIC
Initialization running	0x80	GOOD_NON_SPECIFIC
Hardware errors	·	
x signal	0x0C	BAD_DEVICE_FAILURE
i/p converter	0x0C	BAD_DEVICE_FAILURE
Hardware	0x0C	BAD_DEVICE_FAILURE
Data memory	0xA4	GOOD_MAINT_REQ
Test calculation	0x0C	BAD_DEVICE_FAILURE
Program loading error	0x0C	BAD_DEVICE_FAILURE
Data errors		
Control parameter	0xA4	GOOD_MAINT_REQ
Poti parameter	0xA4	GOOD_MAINT_REQ
Calibration error	0xA4	GOOD_MAINT_REQ
Internal device error	0x0C	BAD_DEVICE_FAILURE
General parameters	0xA4	GOOD_MAINT_REQ
Options parameter	0xA4	GOOD_MAINT_REQ
Info parameter	0xA4	GOOD_MAINT_REQ
PA parameter	0xA4	GOOD_MAINT_REQ
Diagnostic parameter	0xA4	GOOD_MAINT_REQ
Extended diagnostics – EXPERT+		
Air supply		
Perhaps modified TEST	0x80	GOOD_NON_SPECIFIC
Perhaps not enough TEST	0x80	GOOD_NON_SPECIFIC
Perhaps not enough	0x80	GOOD_NON_SPECIFIC
Working at full capacity	0x80	GOOD_NON_SPECIFIC

Fault/diagnostic alarm	Value (hex)	Status alarm acc. to Profile 3.01
Working at full capacity TEST	0x80	GOOD_NON_SPECIFIC
Perhaps modified	0x80	GOOD_NON_SPECIFIC
Actuator springs		
Perhaps spring stiffness reduced TEST	0x80	GOOD_NON_SPECIFIC
Perhaps bias reduced TEST	0x80	GOOD_NON_SPECIFIC
Perhaps bias increased TEST	0x80	GOOD_NON_SPECIFIC
Working at full capacity	0x80	GOOD_NON_SPECIFIC
Working at full capacity TEST	0x80	GOOD_NON_SPECIFIC
Shifting working range		
Shifting working range close	0x80	GOOD_NON_SPECIFIC
Shifting working range open	0x80	GOOD_NON_SPECIFIC
Friction		
Much higher over whole range	0x80	GOOD_NON_SPECIFIC
Much lower over whole range	0x80	GOOD_NON_SPECIFIC
Much higher over partial range	0x80	GOOD_NON_SPECIFIC
Much lower over partial range	0x80	GOOD_NON_SPECIFIC
Much higher over whole range TEST	0x80	GOOD_NON_SPECIFIC
Much lower over whole range TEST	0x80	GOOD_NON_SPECIFIC
Much higher over partial range TEST	0x80	GOOD_NON_SPECIFIC
Much lower over partial range TEST	0x80	GOOD_NON_SPECIFIC
Leakage in pneumatics		
Perhaps existing TEST	0x80	GOOD_NON_SPECIFIC
Perhaps existing	0x80	GOOD_NON_SPECIFIC
Perhaps too large TEST	0x80	GOOD_NON_SPECIFIC
Perhaps too large	0x80	GOOD_NON_SPECIFIC
Limit range		
Down	0x80	GOOD_NON_SPECIFIC
Up	0x80	GOOD_NON_SPECIFIC
Modification impossible	0x80	GOOD_NON_SPECIFIC
Dynamic stress factor		
Load factor > 90 %	0x80	GOOD_NON_SPECIFIC
Inner leakage		
Perhaps existing	0x80	GOOD_NON_SPECIFIC

Fault/diagnostic alarm	Value (hex)	Status alarm acc. to Profile 3.01
Perhaps larger than in original state TEST	0x80	GOOD_NON_SPECIFIC
Perhaps larger than original state	0x80	GOOD_NON_SPECIFIC
External leakage		
Perhaps soon expected	0x80	GOOD_NON_SPECIFIC
Perhaps existing	0x80	GOOD_NON_SPECIFIC
Existing	0x80	GOOD_NON_SPECIFIC
Observing end position		
Zero point shift monotonously downwards, average value above reference lines	0x80	GOOD_NON_SPECIFIC
Zero point shift monotonously upwards, average value above reference lines	0x80	GOOD_NON_SPECIFIC
Zero point alternating, average value above reference lines	0x80	GOOD_NON_SPECIFIC
Zero point shift monotonously downwards, average value below reference lines	0x80	GOOD_NON_SPECIFIC
Zero point shift monotonously upwards, average value below reference lines	0x80	GOOD_NON_SPECIFIC
Zero point alternating, average value below reference lines	0x80	GOOD_NON_SPECIFIC
Connection positioner/valve		
No opt. travel transm. TEST	0x80	GOOD_NON_SPECIFIC
Perhaps loose	0x80	GOOD_NON_SPECIFIC
Perhaps limit. range	0x80	GOOD_NON_SPECIFIC
Perhaps loose TEST	0x80	GOOD_NON_SPECIFIC
Range		
Mostly near closing position	0x80	GOOD_NON_SPECIFIC
Mostly near max. opening	0x80	GOOD_NON_SPECIFIC
Mostly closing position	0x80	GOOD_NON_SPECIFIC
Mostly max. opening	0x80	GOOD_NON_SPECIFIC
Temperature monitoring		
Lower limit exceeded	0x80	GOOD_NON_SPECIFIC
Higher limit exceeded	0x80	GOOD_NON_SPECIFIC
Reference run		
Reference test aborted	0x80	GOOD_NON_SPECIFIC
ESD		
Movement actuator possible -> Masking redundant	0x80	GOOD_NON_SPECIFIC

Fault/diagnostic alarm	Value (hex)	Status alarm acc. to Profile 3.01
Movement actuator impossible	0x80	GOOD_NON_SPECIFIC
Error solenoid valve	0x80	GOOD_NON_SPECIFIC
Function activated		
Initialization active	0x80	GOOD_NON_SPECIFIC
Diagnostic function activated	0x80	GOOD_NON_SPECIFIC

14.4.2 Status alarms according to Profile 3.01 Condensed Status

e 1.70 a 1		Default setting acc. to Pro-	Clas	sified	<u>.</u> .
Fault/diagnostic alarm		file 3.01 Condensed Status		No	Diagnosis
Operational error					
Device not initialized	0x24	BAD_MAINT_ALARM		•	DIA_INIT_ERR
Solenoid valve active	0x80	GOOD_NON_SPECIFIC	•		_
Total valve travel exceeded	0xA4	GOOD_MAINT_REQ	•		DIA_MAINTENANCE
Control loop error	0xA4	GOOD_MAINT_REQ	•		DIA_MAINTENANCE
Zero point error	0xA4	GOOD_MAINT_REQ	•		DIA_ZERO_ERR
Autocorrection	0x80	GOOD_NON_SPECIFIC	•		DIA_MAINTENANCE DIA_MEM_CHECKSUM
Fatal error	0x24	BAD_MAINT_ALARM		•	DIA_HW_ELECTR
Extended diagnostics available	0x80	GOOD_NON_SPECIFIC		•	DIA_MAINTENANCE EXTENSION_AVAILABLE
No emergency mode	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM
Temperature < −40 °C	0x80	GOOD_NON_SPECIFIC	•		_
Temperature > 80 °C	0x80	GOOD_NON_SPECIFIC	•		_
Initialization error					
x > range	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR
Delta x < range	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR
Incorrect attachment (mechanics/pneumatics)	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR
Initialization time exceeded	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR
Solenoid valve initialization	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR
Transit time too short	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR
Pin position	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR
Initialization running	0xA4	GOOD_MAINT_REQ	•		-

Early / dimensional and a second		Default setting acc. to Pro-	Class	sified	Diagnosis	
Fault/diagnostic alarm	file 3.01 Condensed Status γ		Yes	No		
Hardware error						
x signal	0xA8	GOOD_MAIN_DEMANDED	•		DIA_MEASUREMENT	
i/p converter	0x24	BAD_MAINT_ALARM		•	DIA_HW_ELECTR	
Hardware	0x24	BAD_MAINT_ALARM		•	DIA_HW_ELECTR	
Data memory	0xA4	GOOD_MAINT_REQ		•	DIA_MEM_CHECKSUM	
Test calculation	0x24	BAD_MAINT_ALARM		•	DIA_MEM_CHECKSUM	
Program loading error	0x24	BAD_MAINT_ALARM		•	DIA_MEM_CHECKSUM	
Data error						
Control parameter	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Poti parameter	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Calibration error	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Interal device error	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
General parameters	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Options parameters	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Info parameter	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
PA parameter	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Diagnostic parameter		GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Extended diagnostics EXPERT+						
Air supply						
Perhaps modified TEST	0x80	GOOD_NON_SPECIFIC	•		_	
Perhaps not enough TEST	0x80	GOOD_NON_SPECIFIC	•		_	
Perhaps not enough	0x80	GOOD_NON_SPECIFIC	•		_	
Working at full capacity	0x80	GOOD_NON_SPECIFIC	•		_	
Working at full capacity TEST	0x80	GOOD_NON_SPECIFIC	•		_	
Perhaps modified		GOOD_NON_SPECIFIC	•		_	
Actuator springs						
Perhaps spring stiffness reduced TEST		GOOD_NON_SPECIFIC	•		-	
Perhaps bias reduced TEST	0x80	GOOD_NON_SPECIFIC	•		_	
Perhaps bias increased TEST		GOOD_NON_SPECIFIC	•		_	
Working at full capacity	0x80	GOOD_NON_SPECIFIC	•		-	
Working at full capacity TEST	0x80	GOOD_NON_SPECIFIC	•		_	

F 1./1: .: 1	Default setting acc. to Pro-		Class	sified	D: :
Fault/diagnostic alarm		file 3.01 Condensed Status	Yes No		Diagnosis
Shifting working range					
Shifting working range close position	0x80	GOOD_NON_SPECIFIC	•		_
Shifting working range max. open	0x80	GOOD_NON_SPECIFIC	•		_
Friction					
Much higher over whole range	0x80	GOOD_NON_SPECIFIC	•		_
Much lower over whole range	0x80	GOOD_NON_SPECIFIC	•		_
Much higer over partial range	0x80	GOOD_NON_SPECIFIC	•		_
Much lower over partial range	0x80	GOOD_NON_SPECIFIC	•		_
Much higher over whole range TEST	0x80	GOOD_NON_SPECIFIC	•		_
Much lower over whole range TEST	0x80	GOOD_NON_SPECIFIC	•		_
Much higher over partial range TEST	0x80	GOOD_NON_SPECIFIC	•		_
Much lower over partial range TEST	0x80	GOOD_NON_SPECIFIC	•		_
Leakage pneumatics					
Perhaps existing TEST	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps existing	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps too large TEST	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps too large	0x80	GOOD_NON_SPECIFIC	•		_
Limit range					
Down	0x80	GOOD_NON_SPECIFIC	•		_
Up	0x80	GOOD_NON_SPECIFIC	•		_
Modification impossible	0x80	GOOD_NON_SPECIFIC	•		_
Dynamic stress factor					
Load factor > 90 %	0x80	GOOD_NON_SPECIFIC	•		_
Inner leakage					
Perhaps existing	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps larger than original state TEST	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps larger than original state	0x80	GOOD_NON_SPECIFIC	•		-
External leakage					
Perhaps soon expected	0x80	GOOD_NON_SPECIFIC	•		-
Perhaps existing	0x80	GOOD_NON_SPECIFIC	•		_
Existing	0x80	GOOD_NON_SPECIFIC	•		_

Fault/diagnostic alarm		Default setting acc. to Pro- file 3.01 Condensed Status	Class Yes	sified No	Diagnosis
Observing end position					
Zero point shift monotonously downwards, average value above re- ference lines	0x80	GOOD_NON_SPECIFC	•		-
Zero point shift monotonously upwards, average value above reference lines	0x80	GOOD_NON_SPECIFIC	•		_
Zero point alternating, average value above reference lines	0x80	GOOD_NON_SPECIFIC	•		_
Zero point shift monotonously downwards, average value below reference lines	0x80	GOOD_NON_SPECIFIC	•		-
Zero point shift monotonously upwards, average value below reference lines	0x80	GOOD_NON_SPECIFIC	•		_
Zero point alternating, average value below reference lines	0x80	GOOD_NON_SPECIFIC	•		-
Connection positioner/valve					
No opt. travel transm. TEST	0x80	GOOD_NON_SPECIFIC	•		-
Perhaps loose	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps limit. range	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps loose TEST	0x80	GOOD_NON_SPECIFIC	•		_
Range					
Mostly near closing position	0x80	GOOD_NON_SPECIFIC	•		_
Mostly near max. opening	0x80	GOOD_NON_SPECIFIC	•		_
Mostly closing position	0x80	GOOD_NON_SPECIFIC	•		_
Mostly max. opening	0x80	GOOD_NON_SPECIFIC	•		_
Temperature monitoring					
Lower limit exceeded	0x80	GOOD_NON_SPECIFIC	•		_
Higher limit exceeded	0x80	GOOD_NON_SPECIFIC	•		_
Reference run					
Reference test aborted	0x80	GOOD_NON_SPECIFIC	•		_
ESD					
Movement actuator possible -> Masking redundant	0x80	GOOD_NON_SPECIFIC	•		_
Movement actuator impossible	0x80	GOOD_NON_SPECIFIC	•		-
Error solenoid valve	0x80	GOOD_NON_SPECIFIC	•		_

Fault/diagnostic alarm		Default setting acc. to Pro- file 3.01 Condensed Status	Clas Yes	sified No	Diagnosis		
Function activated							
Initialization active	0xBC	GOOD_NON_SPECIFIC	• 1)		_		
Diagnostic function active	0xBC	GOOD_NON_SPECIFIC	• 1)		-		

Can be classified between GOOD_FUNCTION_CHECK and BAD_FUNCTION_CHECK in firmware K 1.10 and higher. See FEATURE_SELECT parameter on page 136.

14.5 Diagnostics with PROFIBUS-DP protocol

Generated alarms are classified and summarized in the PROFIBUS Profile 3.01 and "Condensed status and diagnostic messages" extension.

The diagnostic approach complying with PROFIBUS-DP includes the following types of diagnostic transfer:

- The DP master class 1 reads the diagnostics of the DP slave while the cyclic data exchange is being set up.
- In case of an active diagnostic alarm, the slave responds during the data exchange with a high-prioritized response telegram.
 - The master requests a diagnosis as a result to continue afterwards with the normal data exchange.

The diagnostic alarm is composed of the standard diagnosis according to PROFIBUS DP and the user-specific diagnosis. The first six octets of the diagnostic alarm are assigned to the standard diagnosis, essentially providing a statement about the state of the cyclic connection. Special attention is given to the DIAG.ext bit (octet 1). The slave uses this bit to indicate to the master that the output data are invalid. As a result, the master interrupts the cyclic data exchange to read out the diagnostic data. The master first returns to cyclic data exchange when the DIAG.ext bit is reset by the slave.

If, however, the DIAG.ext bit is set to 0, the existing data are treated as status information by the system. For the Type 3730-4 Positioner, this behavior can be determined by the FEATURE_SELECT parameter. By selecting the option "DIA_MAINTENANCE_ALARM sets DIAG_EXT bit", the DIAG_EXT bit is set when the DIA_MAINTENANCE_ALARM bit has been determined. Deactivate this option if all the data of the positioner should be used as status information.

On using the Profile 3.01 the DIAG_EXT bit can be set when the measured value status has be assigned to BAD_DEVICE_FAILURE. This only happens when the following errors, which lead to device failure, occur:

- Test calculation
- Fatal error
- Program loading error
- No production calibration
- Hardware
- i/p converter

On using the "Condensed status and diagnostic messages" extension, the assignment can be selected as required.

The first four bytes of the manufacturer-specific diagnosis are used for diagnostic alarms according to Profile 3.01. On using the "Condensed Status and diagnostic messages" extension, these condensed diagnostic alarms are also included in these bytes. The manufacturer-specific diagnosis listed in the table below is transmitted in the eleventh byte and above. The contents of both parameters of the Physical Block, DIAGNOSIS and DIAGNOSIS_EXT, are sent.

Standard diagnosis according to Profibus DP

Regardless of whether the positioner was integrated according to Profile 3.01 or using manufacturer specifications, the diagnosis can be restricted to six bytes. For this purpose, the FEATURE_SELECT parameter provides the option "Use DP standard diagnosis (6 bytes)" (see page 136).

The default setting causes the positioner to provide a manufacturer-specific diagnosis of 26 bytes and a diagnosis of 14 bytes according to Profile 3.01.

Octet	Bit	Explanation	Note
1	07		
2	07		
3	07		
4	07	Standard slave diagnostics	
5	07		
6	07		

Octet	Bit	Explanation	Note
7	07		
8	07		
9	07	Definition of manufacturer-specific diagnostic alarms	
10	07		
11	0	DIA_HW_ELECTR (hardware fault in the electronics)	
	1	DIA_HW_MECH (hardware fault in the mechanics)	
	2	Not assigned	
	3	DIA_TEMP_ELECTR (temperature of electronics too high)	
	4	DIA_MEM_CHCKSUM (checksum error in data memory)	
	5	DIA_MEASUREMENT (error in measurement)	
	6	DIA_NOT_INIT (device not initialized/self-calibration not performed)	
	7	DIA_INIT_ERR (self-calibration faulty)	
12	0	DIA_ZERO_ERR (zero point error, final position)	
	1	-	
	2	DIA_CONF_INVAL (configuration invalid/invalid address)	
12	3	DIA_WARMSTART (restart-up/warm start performed)	
	4	DIA_COLDSTART (new start-up/cold start performed)	
	5	DIA_MAINTENANCE (maintenance required)	1
	6	DIA_CHARACT (characteristic invalid)	
	7	IDENT_NUMBER_VIOLATION (selected ID no. has not been implemented by the device yet)	
13	0	DIA_MAINTENANCE_ALARM (device error exists)	1
	1	DIA_MAINTENANCE_DEMANDED (maintenance demanded)	1
	2	DIA_FUNCTION_CHECK (device in function check, in simulation or in MODE_LO)	1
	3	Not assigned	
	47	Reserved in Profile 3.01	
14	06	Reserved in Profile 3.01	
	7	EXTENSION_AVAILABLE (further diagnostic information available)	
15 ³⁾	0	Device not initialized	
	1	Solenoid valve active	
	2	Total valve travel limit exceeded (see Code 24)	
	3	Control loop (see Code 57)	
	4	Zero point (see Code 58)	1
	5	Autocorrection (see Code 59)	
	6	Fatal error (see Code 60)	
	7	Extended diagnostics (only available with EXPERT+)	2

Octet	Bit	Explanation	Note
16 ³⁾	0	x > permissible range (see Code 50)	
	1	Delta x < range (see Code 51)	
	2	Attachment (see Code 52)	
	3	Initialization time exceeded (see Code 53)	
	4	Initialization/solenoid valve (see Code 54)	
	5	Travel time too short (see Code 55)	
	6	Pin position (see Code 56)	
16 ³⁾	7	Test or calibration running	
17 3)	0	x signal (see Code 62)	
	1	i/p converter (see Code 64)	
	2	Hardware (see Code 65)	
	3	Control parameter (see Code 68)	
	4	Poti parameter (see Code 69)	
	5	Adjustment parameter (see Code 70)	
	6	Internal device error 1 (see Code 73)	
	7	General parameter (see Code 71)	
18 3)	0	No emergency mode (see Code 76)	
	1	Program load error (see Code 77)	
	2	Options parameter (see Code 78)	
	3	Info parameter (see Code 75)	
	4	Data memory (see Code 66)	
	5	Control calculation (see Code 67)	
	6	PA parameter (see Code 74)	
	7	DIAG parameter (see Code 80)	
19 ³⁾	0	Reset communication controller	
	1	Reset SPC4 (reset: bus link alarm)	
	2	Binary input 2 deactivated	
	3	Reset application controller	
	47	Not assigned	

Octet	Bit	Explanation	Note
20 3)	0	Air supply: Perhaps modified (TEST)	2
	1	Air supply: Perhaps not enough (TEST)	2
	2	Air supply: Perhaps not enough	2
	3	Air supply: At full capacity	2
	4	Air supply: At full capacity (TEST)	2
	5	Air supply: Perhaps modified	2
	6	2	
	7	Actuator spring: Pretensioning reduced (TEST)	2
21 3)	0	Actuator spring: Perhaps pretensioning increased (TEST)	2
	1	Actuator spring: Working at full capacity	2
	2	Actuator spring: Working at full capacity (TEST)	2
	3	Shifting working range: Close	2
	4	Shifting working range: Open	2
	5	Friction: Higher over whole range	2
	6	Friction: Lower over whole range	2
	7	Friction: Higher over partial range	2
22 3)	0	Friction: Lower over partial range	2
	1	Friction: Higher whole range (TEST)	2
	2	Friction: Lower whole range (TEST)	2
	3	Friction: Higher over partial range (TEST)	2
	4	Friction: Lower over partial range (TEST)	2
	5	Leakage in pneumatics: Perhaps existing (TEST)	2
	6	Leakage in pneumatics: Perhaps existing	2
	7	Leakage in pneumatics: Too large (TEST)	2
23 3)	0	Leakage in pneumatics: Perhaps too large	2
	1	Limit range: Down	2
	2	Limit range: Up	2
	3	Limit range: Modification not possible	2
	4	Dynamic stress factor > than 90 %	2
	5	Inner leakage: > as originally	2
	6	Inner leakage: > as originally (TEST)	2
	7	Inner leakage: Perhaps present	2

Octet	Bit	Explanation	Note
24 3)	0	External leakage: Perhaps soon to be expected	2
	1	External leakage: Perhaps existing	2
	2	External leakage: Existing	2
	3	Zero point shift monotonously downwards, average value above reference lines	2
	4	Zero point shift monotonously upwards, average value above reference lines	2
	5	Zero point shift alternating, average value above reference lines	2
24 3)	6	Zero point shift monotonously downwards, average value below reference lines	2
	7	Zero point shift monotonously upwards, average value below reference lines	2
25 3)	0	Zero point shift alternating, average value below reference lines	2
	1	Attachment between positioner and valve: Travel transmission not optimal (TEST)	2
	2	Attachment between positioner and valve: Perhaps loose	2
	3	Attachment between positioner and valve: Perhaps working range limited	2
	4	Attachment between positioner and valve: Perhaps loose (TEST)	2
	5	Working range: Mostly near closing position	2
	6	Working range: Mostly near max. opening	2
	7	Working range: Mostly closing position	2
26 3)	0	Working range: Mostly max. opening	2
	1	Temperature below -40 °C	2
	2	Temperature above +80 °C	2
	3	Reference test aborted	2
	4	ESD: Movement actuator possible	2
	5	ESD: Movement actuator not possible	2
	6	ESD: Error solenoid valve	2
	7	Not assigned	2

Only on using the profile extension "Condensed Status und diagnostic messages" The following diagnostic alarms indicate the condensed status (refer to section 6.3):

DIA MAINTENANCE ALARM Maintenance alarm DIA MAINTENANCE DEMAND Maintenance demanded DIA MAINTENANCE Maintenance required DIA FUNCTION CHECK Function check

Diagnostic alarm of the extended EXPERT⁺ diagnostics

The default setting causes the positioner to provide a manufacturer-specific diagnosis of 26 bytes and a diagnosis of 14 bytes according to Profile 3.01. Refer to page 140.

14.6 Acyclic data exchange

Note: All parameters in the parameter list on page 130 onwards, which are not marked, are included in the acyclic data exchange.

The acyclic data exchange complying to DP-V1 with a master class 2 (MS2) is mainly used for commissioning, parameter configuration and for diagnostic purposes.

The Device Description can be downloaded at the SAMSON Internet site (www.samson.de) to configure parameters in Type 3730-4 Positioner over Siemens PDM (Process Device Manager). Some parameters make it necessary to use the new DD revision 2 for firmware version K 1.11/R 1.45 and higher.

Appendix 15

15.1 Code list

Code no.	Parameter – Display, values [default setting]	Description			
Importo	Important! Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.				
0	Operating mode [MAN] AUIO SAFE ESC	AUtO = Automatic mode MAN = Manual mode SAFE = Fail-safe position ESC = Escape Switchover from automatic to manual mode is smooth. In fail-safe mode, the symbol S appears on the display. In MAN and AUtO mode, the system deviation is represented by the bar graph elements. When the positioner is initialized, the numerical display indicates the valve position or the angle of rotation in %, otherwise the position of the lever in relation to the central axis is displayed in degrees °.			
1	Manual w 0 to 100 [0] % of the nominal range	Adjust the manual set point with the rotary pushbutton, the current travel/angle is displayed in % when the positioner is initialized, otherwise the position of the lever in relation to the central axis is indicated in degrees °.			
2	Reading direction [Normal], upside down, ESC	The reading direction of the display is turned by 180°.			
3	Enable configuration [OFF] ON ESC	Enables the option to modify data (automatically deactivated when the rotary pushbutton has not been operated for 120 s.) PA blinks on the display when the on-site operation over PROFIBUS-PA communication is locked. Codes marked with an asterisk (*) can only be read and not overwritten. Likewise, codes can only read over the SSP interface.			

Code no.	Parameter – Display, values [default setting]		De	scription
Importa	nt! Codes with marked with an ast	erisk (*) must be	e enabled with Code	e 3 prior to configuration.
4*	Pin position 17, 25, 35, 50, 70, 100, 200 mm	serted into the travel/angle	e correct pin pos of rotation.	or SUb, the follower pin must be in- ition according to the valve
	90° with rotary actuators [OFF], ESC Note: If you select a pin position in Code 4 that is too small, the positioner switches to SAFE mode for reasons of safety	Pin position Code 4 17 25 35 50 70 100 200 90°	Standard Code 5 7.5 7.5 15.0 30.0 40.0 60.0 120.0 90.0	Adjustment range Code 5 3.6 to 17.7 5.0 to 25.0 7.0 to 35.4 10.0 to 50.0 14.0 to 70.7 20.0 to 100.0 40.0 to 200.0 24.0 to 110.0
5*	Nominal range mm or angle ° ESC	For initializarotation of the The permissil according to After initializ	tion using NOM of the valve must be eadjustment rathe table for Cocation has been su	or SUb, the nominal travel/angle of entered. nge depends on the pin position
6*	Init mode [MAX] NOM MAN SUB ZP ESC	MAX: Max the copport NOM: Non the copport to the MAN: Marris SUb: No:	closure member for posite stop in the a ninal range of the closure member n e indicated OPEN	e control valve, the travel/angle of neasured from the CLOSED position N position. upper x-range value

Code no.	Parameter – Display, values [default setting]	Description
Importo	int! Codes with marked with an ast	erisk (*) must be enabled with Code 3 prior to configuration.
7*	w/x [オオ] increasing/increasing オム increasing/decreasing ESC	Direction of action of the reference variable w in relation to the travel/angle of rotation x Automatic adaptation: AIR TO OPEN: On completing initialization, the direction of action remains increasing/increasing (¬¬), a globe valve opens as the mA signal increases. AIR TO CLOSE: On completing initialization, the direction of action changes to increasing/decreasing (¬¬¬), a globe valve closes as the mA signal increases.
8*	Lower x-range value 0.0 to 80.0 [0.0] % of the nominal range ESC Note: Specified in mm or angle ° provided Code 4 is set	Lower range value for the travel/angle of rotation in the nominal or operating range. The operating range is the actual travel/angle of the control valve and is limited by the lower x-range value (Code 8) and the upper x-range value (Code 9). Usually, the operating range and the nominal range are identical. The nominal range can be limited to the operating range by the lower and upper x-range values. Value is displayed or must be entered. The characteristic is adapted. See also the example in Code 9!
9*	Upper x-range value 20.0 to 100.0 [100.0] % of the nominal range ESC Note: Specified in mm or angle ° provided Code 4 is set	Upper range value for the travel/angle of rotation in the nominal or operating range. Value is displayed or must be entered. The characteristic is adapted. Example: The operating range is modified, for example, to limit the range of a control valve which has been sized too large. For this function, the entire resolution range of the reference variable is converted to the new limits. 0 % on the display corresponds to the adjusted lower limit and 100 % to the adjusted upper limit.
10*	Lower x-limit 0.0 to 49.9 % of the operating range [OFF], ESC	Limitation of the travel/angle of rotation downwards to the entered value, the characteristic is not adapted. The characteristic is not adapted to the reduced range. See also example in Code 11.

Code no.	Parameter – Display, values [default setting]	Description		
Importo	Important! Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.			
11*	Upper x-limit 50.0 to 120.0 [100] % of	Limitation of the travel/angle of rotation upwards to the entered value, the characteristic is not adapted.		
	the operating range OFF, ESC	Example: In some applications, it is better to limit the valve travel, e.g. if a certain minimum medium flow is required or a maximum flow must not be reached. The lower limit must be adjusted with Code 10, and the upper limit with Code 11. If a tight-closing function has been set up, it has priority over the travel limitation!		
		When set to OFF, the valve can be opened past the nominal travel with a reference variable outside of the 0 to 100 % range.		
14*	Final position w < 0.0 to 49.9 [1.0] % of the span adjusted via Code 12/13 OFF, ESC	If w approaches the percentage adjusted at the final value that causes the valve to close, the actuator is immediately completely vented (with AIR TO OPEN) or filled with air (with AIR TO CLOSE). This action always lead to maximum tight-closing of the valve. Codes 14/15 have priority over Codes 8/9/10/11. Codes 21/22 have priority over Codes 14/15.		
15*	Final position w > 50.0 to 100.0 % of the span adjusted via Code 12/13 [OFF], ESC	If w approaches the percentage adjusted at the final value that causes the valve to open, the actuator is immediately completely filled with air (with AIR TO OPEN) or vented (with AIR TO CLOSE). This action always lead to the valve being completely opened. Codes 14/15 have priority over Codes 8/9/10/11. Codes 21/22 have priority over Codes 14/15. Example: Set the final position w > to 99 % for three-way valves.		
16*	Pressure limit 1.4 2.4 3.7 bar [OFF], ESC	The pressure limit determined during initialization is displayed and can be changed. (Only for position valve closed/AIR TO OPEN, for valve open/AIR TO CLOSE, always set it to <i>OFF</i> after initialization, i.e. complete supply pressure to the actuator. The signal pressure can also be limited already prior to initialization to protect against impermissibly high actuating forces). Note: After changing a pressure limit already set, the actuator must be vented once (e.g. by selecting the fail-safe position over Code 0). The pressure limit must always be set to <i>OFF</i> after initialization for double-acting actuators.		

Code no.	Parameter – Display, values [default setting]	Description
Importa	nt! Codes with marked with an ast	erisk (*) must be enabled with Code 3 prior to configuration.
17*	KP step 0 to 17 [7] ESC	Displaying or changing K_P Note on changing the K_P and T_V steps: During the initialization of the positioner, the K_P and T_V values are optimized. Should the positioner show a tendency for impermissibly high post-pulse oscillation due to additional interference, the K_P and T_V steps can be adapted after the initialization. For this, either the T_V step can be increased in increments until the desired response behavior is reached or, when the maximum value of 4 is reached, the K_P step can be decreased in increments. CAUTION! Changing the K_P step influences the system deviation.
18*	TV step 1 [2] 3 4 OFF OFF, ESC	Displaying or changing T_V , see note under K_P step A change of the T_V step has no effect on the system deviation.
19*	Tolerance band 0.1 to 10.0 [5] % of the operating range ESC	Used for error monitoring Determination of the tolerance band in relation to the operating range. Associated lag time [30] s is a reset criterion. If a transit time is determined during initialization which is six times > 30 s, the six-fold transit time is accepted as the lag time.
20*	Characteristic 0 to 9 [0] ESC	Select the characteristic: 0: Linear 5: Rotary plug valve linear 1: Equal percentage 6: Rotary plug valve eq. perc. 2: Reverse equal percentage 7: Segmented ball valve linear 3: Butterfly valve linear 8: Segmented ball valve eq. p. 4: Butterfly valve eq. percentage 9: User-defined * * Definition over SAMSON TROVIS-VIEW software or PROFIBUS-PA communication

Code no.	Parameter – Display, values [default setting]	Description			
Importa	Important! Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.				
21*	w-ramp Open 0 to 240 s [0] ESC	The time required to pass through the operating range when the valve opens. Limitation of the transit time (Code 21 and 22): For some applications it is recommendable to limit the transit time of the actuator to prevent it from engaging too fast in the running process. Code 21 has priority over Code 15. Note: The function is not activated when the fail-safe function or solenoid valve is triggered nor upon failure of the auxiliary power.			
22*	w-ramp Closed [0] to 240 s ESC	The time required to pass through the operating range when the valve closes. Code 22 has priority over Code 14. Note: The function is not activated when the fail-safe function or solenoid valve is triggered nor upon failure of the auxiliary power.			
23*	Total valve travel 0 to 99 · 10 ⁷ [0] Exponential reading from 9999 travel cycles onwards RES, ESC	Totaled double valve travel. Can be reset to 0 via <i>RES</i> . Note: The total valve travel is saved in a non-volatile memory after every 1000 double travel.			
24*	LV total valve travel 1000 to 99 · 10 ⁷ [1 000 000] Exponential reading from 9999 travel cycles onwards ESC	Limit value of total valve travel. If the limit is exceeded, the fault symbol and the wrench symbol appear.			
34*	Closing direction CL Clockwise [CCL] Counterclockwise ESC	Turning direction in which the valve is moved to the CLOSED position (view onto the rotary switch motion when the positioner cover is open). Needs only be entered in initialization mode SUb (Code 6).			
35*	Blocking position [0] mm/° /% ESC	Entering the blocking position. Distance up to the CLOSED position. Only necessary in initialization mode SUb.			

Code no.	Parameter – Display, values [default setting]	Description			
Importa	Important! Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.				
36*	Reset [OFF], RUN, ESC	Resets all parameters to default (factory setting). Note: After setting <i>RUN</i> , the positioner must be re-initialized.			
38*	Inductive alarm [NO], YES, ESC	Indicates whether the inductive limit switch option is installed or not.			
39	System deviation e info -99.9 to 999.9 %	Display only, indicates the deviation from the position required.			
40	Transit time Open info 0 to 240 s [0]	Display only, minimum opening time determined during initialization.			
41	Transit time Closed info 0 to 240 s [0]	Display only, minimum closing time determined during initialization.			
42	Auto-w/Man-w info 0.0 to 100.0 % of the span	Display only, Auto mode: indicates the supplied automatic reference variable Man mode: indicates the supplied manual reference variable			
43	Firmware info Control	Display only, indicates the positioner type and the current firmware version in alternating sequence.			
44	y info [0] to 100 % OP, MAX,	Display only. Indicates the control signal y in % based on the travel range determined on initialization MAX: The positioner builds up its maximum output pressure, see description in Code 14 and 15.			
		OP: The positioner vents completely, see description in Code 14 and 15. : The positioner is not initialized.			
45	Solenoid valve info YES, HIGH/LOW, NO	Display only, indicates whether a solenoid valve is installed or not. If a voltage supply is connected at the terminals of the installed solenoid valve, YES and HIGH appear on the display in alternating sequence. If a voltage supply is not connected (actuator vented, fail-safe position indicated on the display by the S symbol), YES and LOW appear on the display in alternating sequence.			

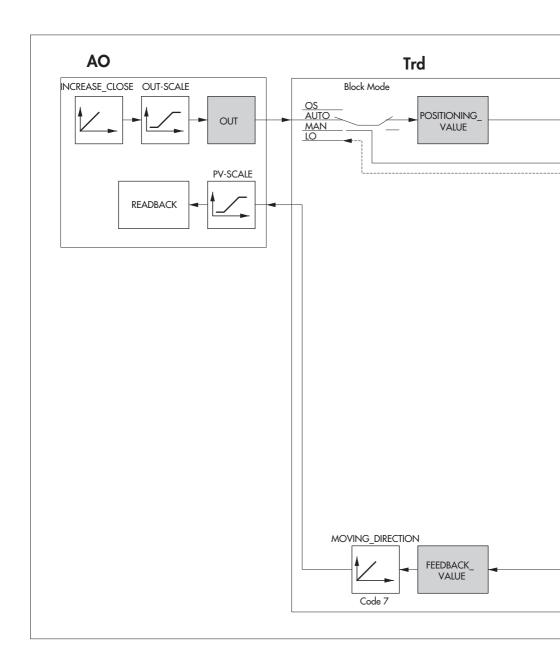
Code no.	Parameter – Display, values [default setting]	Description
Importa	terisk (*) must be enabled with Code 3 prior to configuration.	
46*	Bus address ESC	In delivered state, the standard bus address is 126. The address can only be changed with the PROFIBUS command SET_ADRESS when this bus address is set. Alternatively, the bus address setting can be performed directly at the positioner (refer to section 5.11).
47*	Write protection PA YES, [NO], ESC	When the write protection function is activated, device data can only be read, but not overwritten over PROFIBUS-PA communication.
48*	Diagnostic parameters d	
	d0 Current temperature -55 to 125	Operating temperature [°C] inside the positioner
	d1 Minimum temperature [20]	The lowest temperature below 20 °C that has ever occurred.
	d2 Maximum temperature [20]	The highest temperature above 20 °C that has ever occurred.
	d3 Number of zero calibrations	The number of zero calibrations since the last initialization.
	d4 Number of Initializations	The number of initializations that have been performed.
	d5 Zero point limit 0.0 to 100.0 % [5 %]	Limit for the zero point monitoring.
	d6 Condensed status	Condensed status, made up from the individual states. O OK: Okay 1 C: Maintenance required 2 CR: Maintenance demanded 3 B: Maintenance alarm 7 I: Function check
	d7 Start reference run [OFF], ON, ESC, 1	Triggering of a reference run for the functions: Drive signal y steady-state and drive signal y hysteresis. The reference run can only be activated in manual operating mode as the valve moves through its entire travel range. If EXPERT ⁺ is activated at later point in time, the reference graphs
		must be plotted in order to activate the diagnostic functions.

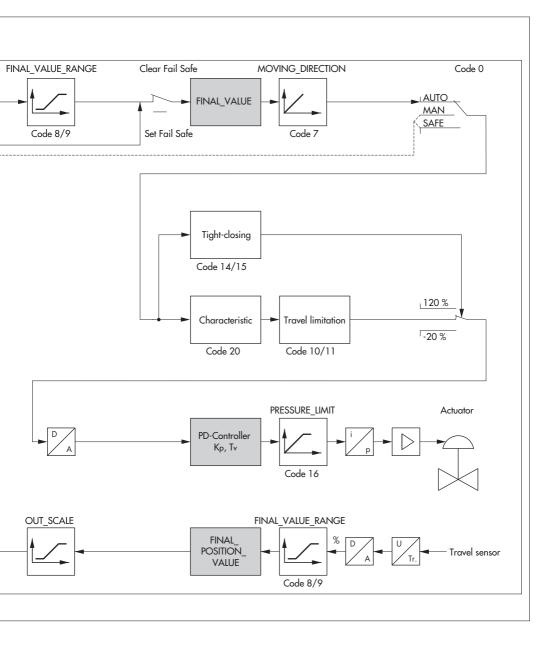
Code no.	Parameter – Display, values [default setting]	Description
Importa	nt! Codes with marked with an ast	erisk (*) must be enabled with Code 3 prior to configuration.
48*	d8 EXPERT ⁺ activation	Enter the activation code for EXPERT ⁺ . After the activation procedure has been successfully completed, YES appears under d8.
	PA parameters PA-P	
	FO Firmware Rev. Communication	
	F1 Binary input1	1 Active 0 Inactive
	F2 Binary input2	1 Active 0 Inactive
	F3 Counter device start-ups	
	F4 Counter reset communication	
	F5 Counter reset control	
	F6 Counter reset bus connection	
	F7 Slave status	0 Undefined 2 wait_cfg 1 wait_prm 3 data_exchg
	AO Function Block A	
	A0 Target Mode	Required operating mode
	A1 Actual Mode	Actual operating mode
	A2 SP Value	Displays the setpoint (reference variable)
	A3 SP Status	and its status
	A4 Readback Value	Displays the current position
	A5 Readback Status	and its status
	A6 Out Value	Displays the manipulated variable (output value)
	A7 Out Status	and its status
	A8 Unassigned	
	A9 Simulate	Positioner simulation 1 Enabled 0 Disabled

Code no.		rameter – Display, values fault setting]	Description		
Importa	tant! Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.				
48*	Transducer Blocks A0, DI1, DI2 †				
	t0	Target Mode AO Trd	Required operating mode		
	t1	Actual Mode AO Trd	Actual operating mode		
	t2	Final_Position_Value. Value	Displays the current valve position in relation to the operating position		
	ŧ3	Final_Position_Value. State	and its status		
	t4	AO Feedback Value	Displays the current valve position [OUT_SCALE]		
	t5	AO Feedback State	and its status		
	t6	AO Final_Value.Value	Displays the output value [FVR]		
	t7	AO Final_Value.State	and its status		
	t8	AO Final_Position_ Value.Value	Displays the current valve position [FVR]		
	t9	AO Final_Position_ Value.State	and its status		
	Resource Block S				
	S0	Resource Target Mode	Required operating mode		
	S 1	Resource Actual Mode	Actual operating mode		
	DI1Function Block I				
	10	Target Mode DI1	Required operating mode		
	11	Actual Mode DI1	Actual operating mode		
	12	DI1 Trd PV_D.Value	Displays the discrete input variable		
	13	DI1 Trd PV_D.State	and its status		
	14	DI1 Fb Target Mode	Required operating mode FB		
	15	DI1 Fb Actual Mode	Actual operating mode FB		
	16	DI1 Fb OUT_D.Value	Displays the discrete output variable		
	17	DI1 Fb OUT_D.State	and its status		

Code no.	Parameter – Display, values [default setting]	Description
Importo	int! Codes with marked with an ast	terisk (*) must be enabled with Code 3 prior to configuration.
48*	I8 DI1 FSAFE_VAL_D	Default value when the sensor reports an error
	19 Simulate	Simulation
	D2 Function Block L	
	LO Target Mode DI2	Required operating mode
	L1 Actual Mode DI2	Actual operating mode
	L2 DI2 Trd PV_D.Value	Displays the discrete input variable
	L3 DI2 Trd PV_D.State	and its status
	L4 DI2 Fb Target Mode	Required operating mode FB
	L5 DI2 Fb Actual Mode	Actual operating mode FB
	L6 DI2 Fb OUT_D.Value	Displays the discrete output variable
	L7 DI2 Fb OUT_D.State	and its status
	L8 DI2 FSAFE_VAL_D	Default value when the sensor reports an error
	L9 Simulate	Simulation

Error c	odes – Recommended action	Condensed status alarm active, when prompted, <i>Err</i> appears.			
	cation errors ted on the display by the cond	ensed status with the corresponding classification)			
50	x < range	The value supplied by the measuring signal is either too high or too low, the measuring sensor is close to its mechanical limit. • Pin positioned incorrectly. • Bracket slipped in case of NAMUR attachment or positioner is not central. • Follower plate incorrectly attached.			
	Recommended action	Check attachment and pin position, set operating mode from SAFE to MAN and re-initialize the positioner.			
51	∆x > range	The measuring span of the sensor is too low. • Pin positioned incorrectly. • Wrong lever. A rotational angle smaller than 16° at the positioner shaft crea just an alarm. An angle below 9° leads to the initialization bein canceled.			
	Recommended action	Check attachment and re-initialize the positioner.			
52	Attachment	 Positioner attachment incorrect. Nominal travel/angle (Code 5) could not be achieved during initialization under NOM (no tolerance downwards permissible). Mechanical or pneumatic error, e.g. wrong lever selected or supply pressure too low to move to the required position or pneumatic fault. 			
	Recommended action	Check attachment and supply pressure. Re-initialize the positioner. Under certain circumstances, it may be possible to check the maximum travel/angle by entering the actual pin position and then performing an initialization under MAX. After initialization has been completed, the Code 5 indicates the maximum achieved travel or angle.			
53	Init time >	The initialization routine lasts too long. The positioner returns to its previous operating mode. No pressure on the supply line or there is a leak. Supply air failure during initialization.			
	Recommended action	Check attachment and supply pressure. Re-initialize the positioner.			


Error c	odes – Recommended action	Condensed status alarm active, when prompted, <i>Err</i> appears.			
54	Init – Solenoid valve	 A solenoid valve is installed (Code 45 = YES) and was not or not properly connected so that an actuator pressure could not be built up. The alarm is generated when you attempt to initialize the positioner. If you attempt to initialize the device from the fail-safe position (SAFE). 			
	Recommended action	 Re. 1) Check connection and supply voltage of the solenoid valve. Code 45 High/Low Re. 2) Set the <i>MAN</i> operating mode over Code 0. Then initialize the positioner. 			
55	Transit time <	The actuator transit times determined during the initialization are so short that the positioner cannot adapt itself optimally.			
	Recommended action	Check the volume restriction setting as described in section 4.1, re-initialize the positioner.			
56	Pin pos.	Initialization was canceled because you are required to enter the pin position for the selected initialization modes <i>NOM</i> and <i>SUb</i> .			
	Recommended action	Enter pin position over Code 4 and nominal travel/angle over Code 5 . Re-initialize the positioner.			
	tional errors ted on the display by the cond	ensed status with the corresponding classification)			
57	Control loop	Control loop error, the control valve does not react within the tolerable times of the controlled variable (tolerance band alarm Code 19). • Actuator mechanically blocked. • Attachment of the positioner subsequently postponed. • Supply pressure not sufficient.			
	Recommended action	Check attachment.			
58	Zero point	Zero point incorrect. Error may arise when the mounting position/linkage of the positioner moves or when the valve seat trim is worn, especially with soft-sealed plugs.			
	Recommended action	Check valve and mounting of the positioner. If OK, perform a zero calibration over Code 6 (see section 5.8 on page 71). We recommend re-initializing the positioner in case of deviations in the zero point over 5 %.			


Error c	odes – Recommended action	Condensed status alarm active, when prompted, <i>Err</i> appears.			
59	Autocorrection	Should an error occur in the data range of the positioner, the self-monitoring function recognizes it and automatically corrects it.			
	Recommended action	Automatic			
60	Fatal error	An error was detected in the data relevant for safety, autocorrection is not possible. This may be due to EMC disturbances. The control valve moves to its fail-safe position.			
	Recommended action	Reset over Code 36. Re-initialize the positioner.			
	rare errors ted on the display by the cond	ensed status with the corresponding classification)			
62	x signal	Determination of the measured value for the actuator has failed. Conductive plastic element is defective. The positioner continues to run in emergency mode, but should be replaced as soon as possible. The emergency mode on the display is indicated by a blinking control symbol and 4 dashes instead of the position indication. Note on the control: If the measuring system has failed, the positioner is still in a reliable state. The positioner switches to emergency mode where the position cannot be accurately controlled anymore. However, the positioner continues operation according to its reference variable signal so that the process remains in a safe state.			
	Recommended action	Return the positioner to SAMSON AG for repair.			
64	i/p converter (y)	The circuit of the i/p converter has been interrupted.			
	Recommended action	Cannot be remedied. Return the positioner to SAMSON AG for repair.			
Error o	ppendix				
65	Hardware	A hardware error has occurred, the positioner moves to the fail-safe position <i>SAFE</i> .			
	Recommended action	Confirm error and return to the automatic operating mode, or perform a reset and re-initialize the device. If this is not successful, return device to SAMSON AG for repair.			

Error codes – Recommended action		Condensed status alarm active, when prompted, <i>Err</i> appears.			
66	Data memory	The writing of data to the data memory does not work anymore, e.g. when the written data deviate from the read data. Valve moves to the fail-safe position.			
	Recommended action	Return the positioner to SAMSON AG for repair.			
67	Test calculation	The hardware positioner is monitored by means of a test calculation.			
	Recommended action	Confirm error. If this is not possible, return the positioner to SAMSON AG for repair.			
Data e	rrors				
68	Control parameter	Control parameter error			
	Recommended action	Confirm error, perform reset and re-initialize the positioner.			
69	Poti parameter	Parameter error of the digital potentiometer.			
	Recommended action	Confirm error, perform reset and re-initialize the positioner.			
70	Calibration	Error in the production calibration data. Subsequently, the deviruns on default values			
	Recommended action	Return the positioner to SAMSON AG for repair.			
71	General parameters	Parameter errors that are not critical for the control.			
	Recommended action	Confirm error. Check and, if necessary, reset required parameters.			
73	Internal device error 1	Internal device error			
	Recommended action	Return the positioner to SAMSON AG for repair.			
74	PA parameters	Parameter errors that are not critical for the control.			
	Recommended action	Confirm error and perform reset.			
75	Info parameters	Info parameter errors that are not critical for the control.			
	Recommended action	Confirm error. Check and reset required parameter, if necessary.			

Appendix

Error c	odes – Recommended action	Condensed status alarm active, when prompted, <i>Err</i> appears.
76	No emergency mode	The travel measuring system of the positioner has a self-monitoring function (see Code 62). A controlled emergency mode is not available on certain actuators, such as double-acting actuators. For this reason, the positioner moves to the fail-safe position when a measuring error occurs. During the initialization, the positioner checks whether the actuator has such a function or not.
	Recommended action	Merely information, confirm, if necessary. No further action necessary.
77	Program loading error Additional alarm at the fault alarm contact	When the device starts operation for the first time after the PA signal has been applied, it carries out a self-test (<i>tEStinG</i> runs across the display). If the device loads a program that does not correspond to that of the positioner, the valve moves to the fail-safe position. It is not possible to make the valve leave this fail-safe position again by operating the positioner.
	Recommended action	Interrupt fieldbus signal and restart positioner. Otherwise, return the positioner to SAMSON AG for repair.
Extend	ed diagnositics	
78	Options parameter	Errors in options parameters
79	Diagnostic alarms	Alarms are generated in the EXPERT+ extended diagnostics if EXPERT+ has been successfully activated in Code 48.
80	Diagnostic parameters	Errors that are not critical for control.
	Recommended action	Confirm error. Check and, if necessary, start new reference run.
81	Reference graphs	Error on plotting the reference graphs of drive signal y steady-state or drive signal y hysteresis. Reference run was interrupted Reference line y steady-state or y hysteresis was not adopted.

Physical Block, Slot 0 · Profile-specific parameters

Parameter	Index	SK	Access	Mode	Selection/display [default value]
ALARM_SUM	23		r		[0]
ALERT_KEY	20	S	r/w	ALL	[0]
BLOCK_OBJECT	16		r		
COND_STATUS_DIAG	43	S	r/w	ALL	
DESCRIPTOR	36	S	r/w	ALL	
DEVICE_CERTIFICATION	33		r		
DEVICE_ID	27		r		
DEVICE_INSTAL_DATE	38	S	r/w	ALL	
DEVICE_MAN_ID	26		r		
DEVICE_MESSAGE	37	S	r/w	ALL	
DEVICE_SER_NUM	28		r		
DIAG_EVENT_SWITCH	44	S	r/w	ALL	
DIAGNOSIS	29		r		Bit: 0 = false 1 = true Byte Bit According to PA V3.01 0 0 DIA_HW_ELECTR 0 1 DIA_HW_MECH 0 2 - 0 3 DIA_TEMP_ELECTR 0 4 DIA_MEM_CHKSUM 0 5 DIA_MEASUREMENT 0 6 DIA_NOT_INIT 0 7 DIA_INIT_ERR 1 0 DIA_ZERO_ERR 1 1 - 1 2 DIA_CONF_INVAL 1 3 DIA_WARMSTART 1 4 DIA_COLDSTART
Continued: next page					1 5 DIA_MAINTAINANCE

Desc	rip	tio	n
Desc	ijΡ	III	"

Indicates current state of process alarms in the Physical Block.

Contains the ID number of the plant unit.

Used to select whether the positioner is used according to Profile 3.01 or used with condensed states.

A change is not permissible in the DATA EXCHANGE (cyclic) state.

User-definable text to describe the device within the application, which is saved in the field device.

Contains a list of notified bodies that have issued explosion protection certificates for this field device.

Contains manufacturer-specific identification of the field device.

Contains date of installation of the field device.

Contains the identification code of the manufacturer of the field device.

User-definable text saved in the field device.

Contains the serial number of the field device and provides clear identification of the device in combination with DEVICE_MAN_ID and DEVICE_ID.

Contains the classification of the diagnostic and status alarms.

Detailed information of the device, bitwise coded. More than one alarm possible at once.

- Type of alarm: A Dynamic alarm: automatically reset after 10 seconds
 - Static alarm: remains active as long as the reason for the alarm still exists in the device

Type of alarm Description

- Hardware error in the electronics . . . R
- Hardware error in the mechanics . . . R
- . . . R Temperature in the electronics too high
- . . . R Checksum error in the data memory
- . . . R Error occurred in measurement
- . . . R Device not initialized/Self-calibration has not been performed
- . . . R Initialization incorrect
- . . . R Zero point error (end position)
- . . . R Configuration invalid/invalid address
- . . . A Restart-up (warm start) performed
- . . . A New start-up (cold start) performed
- . . . R Maintenance necessary
- . . . R Invalid characteristic
- The ID number selected could not yet be implemented by the device . . . R

Parameter	Index	SK	Access	Mode	Selection/display [default value]		
Continued:	29		r		Byte Bit According to PA V3.01		
DIAGNOSIS					2 0 DIA_MAINTENANCE_ALARM 2 1 DIA_MAINTENANCE_DEMANDED 2 2 DIA_FUNCTION_CHECK 2 3 DIA_INV_PRO_COND 2 47 - 3 07 - 4 06 - 4 7 EXTENSION_AVAILABLE		
DIAGNOSIS_EXT	30		r		Bit: 0 = false · 1 = true		
					Byte Bit Description		
					0 Device not initialized 0 1 Solenoid valve active 0 2 LV total valve travel (Code 24) 0 3 Control loop error (Code 57) 0 4 Zero point error (Code 58) 0 5 Autocorrection (Code 59) 0 6 Fatal error (Code 60) 0 7 Extended diagnostics available (only with EXPERT+) 1 0 x > permissible range (Code 50) 1 1 Delta x < permissible range (Code 51) 1 2 Attachment (Code 52) 1 3 Init time > (Code 53) 1 4 Init - solenoid valve (Code 54) 1 5 Transit time < (Code 55) 1 6 Pin position (Code 56) 1 7 Test or calibration in progress		
DIAGNOSIS_MASK	31		r		Bit = 0: Status not available Bit = 1: Status available		
DIAGNOSIS_MASK_EXT	32		r		Bit = 0: Status not available		
					Bit = 1: Status available		

Type of alarm	Description
R	A device error exists
R	Maintenance demanded
R	Device performing a function check or it is in simulation or in MODE_LO
R	The current process conditions do not allow a valid calculation of values.

Further diagnostic information available, refer to DIAGNOSIS_EXT/DIAGNOSIS_EXTENSION_2 parameters

Further detailed information of the device, bitwise coded. More than one alarm possible at once.

Byte	Bit	Description	Byte	Bit	Description
2	0	x signal (Code 62)	4	0	Reset: Communication controller
2	1	i/p converter (Code 64)	4	1	Reset: Bus link error alarm
2	2	Hardware error (Code 65)	4	2	Bin2 deactivated
2	3	Control parameter error (Code 68)	4	3	Reset: Control controller
2	4	Potentiom. parameter error (Code 69)	4	4	-
2	5	Calibration (Code 70)	4	5	-
2	6	No production calibration	4	6	-
2	7	General parameters (Code 71)	4	7	-
3	0	Emergency mode No error	5	0	Supply air: Perhaps modified (TEST)
		(Code 76)	5	1	Supply air: Perhaps insufficient (TEST)
3	1	Program loading error (Code 77)	5	2	Supply air: Perhaps insufficient
3	2	Options parameter (Code 78)	5	3	Supply air: At full capacity
3	3	Info parameter (Code 75)	5	4	Supply air: At full capacity (TEST)
3	4	Data memory (Code 66)	5	5	Supply air: Perhaps modified
3	5	Test calculation (Code 67)	5	6	Actuator springs: Spring stiffness
3	6	PA parameters (Code 74)			reduced (TEST)
3	7	Diagnostic parameters (Code 80)	5	7	Actuator springs: Pre-tensioning reduced (TEST)

Defines the availability of the status bit in DIAGNOSIS parameter

Defines the availability of the status bit in DIAGNOSIS_EXT parameter

FACTORY_RESET	35			Mode	Selection/display [default value]
	33	S	r/w	ALL	1 (0x0001)

Command to reset the positioner to default values

Resets the start-up, identification and function block parameters as well as the status classification

Note: After performing a reset, the positioner needs to be re-initialized!

Warm start

Resets the bus address to the default value of 126. The positioner restarts after the reset is performed.

Note: The bus address can only be reset using this command in firmware version K 1.11 and higher. The bus address is not reset when the identification parameters are reset.

Resets the identification parameters

Resets the start-up and function block parameters as well as the status classification

Note: After performing a reset, the positioner needs to be re-initialized!

Resets the start-up parameters

Note: After performing a reset, the positioner needs to be re-initialized!

Physical Block: CONFIG BINARY INPUT 21, DEVICE INSTAL DATE, DEVICE MESSAGE, DESCRIPTOR, IDENT LIMIT SWITCHES¹⁾, IDENT NUMBER SELECTOR, TAG DESC, TEXT INPUT 1 to 5¹⁾

AO Function Block: TAG DESC

AO Transducer Block: ACTUATOR MAN, ACTUATOR SER NUM, ADD GEAR ID, ADD GEAR INST DATE, ADD_GEAR_MAN, ADD_GEAR_SER_NUM, DEVICE_CALIB_DATE, DEVICE_CHARACTI), DEVICE_CONFIG_DATE, TAG_DESC VALVE_MAINT_DATE, VALVE_MAN, VALVE_SER_NUM, VALVE_TYPE

DI1/2 Function Block: TAG DESC

DI1/2 Transducer Block: SENSOR ID, SENSOR MAN, SENSOR SER NUM, TAG DESC

Physical Block: COND_STATUS_DIAG, DIAG_EVENT_SWITCH, DIAG_EVENT_SWITCH_2¹), FEATURE

Physical Block: ALERT_KEY, FACTORY_RESET, FEATURE_SELECT, LOCAL_OP_ENA, ST_REV, STRATEGY, TARGET_MODE, WRITE_LOCKING

AO Function Block: ALERT KEY, BATCH, CHECK BACK OPT, FSAFE TIME, FSAFE TYPE, FSAFE VALUE, IN CHANNEL, INCREASE CLOSE, OUT CHANNEL, OUT SCALE, PV SCALE, SIMULATE, ST REV, STRATEGY, TARGET MODE

AO Transducer Block: ACTUATOR_ACTION, ALERT_KEY, CHARACT_TYPE¹⁾, SELF_CALIB_CMD, SELF_CALIB_STATUS, ST_REV, STRATEGY, TARGET_MODE

D11/2 Function Block: ALERT_KEY, BATCH, CHANNEL, FSAFE_TYPE, FSAFE_VAL_D, INVERT, SIMULATE, ST REV, STRATEGY, TARGET MODE

DI1/2 Transducer Block: ALERT KEY, SENSOR WIRE CHECK, ST REV, STRATEGY, TARGET MODE

¹⁾ Manufacterer-specific parameter

Parameter	Index	SK	Access	Mode	Selection/display [default value]
FEATURE	42		r		Supported / Enabled 0 = Not supported / Not enabled 1 = Supported / Enabled Byte Bit Element 0 0 Condensed_Status
HARDWARE REVISION	25		r		13 07 Reserved
HW_WRITE_ PROTECTION	41		r		0 = Unprotected 1 = Protected
IDENT_NUMBER_ SELECTOR	40	S	r/w	ALL	0 = Profile-specific ID (0x9710)
LOCAL_OP_ENA	39	S	r/w	ALL	0 = Disabled 1 = Enabled
MODE_BLK	22		r		
SOFTWARE_REVISION	24		r		
ST_REV	17		r		
STRATEGY	19	S	r/w	ALL	
TAG_DESC	18	S	r/w	ALL	[32 user-definable characters]
TARGET_MODE	21	S	r/w	ALL	5 = AUTO (automatic mode) 128 = O/S (out of service mode)
VIEW1	240		r		
WRITE_LOCKING	34	S	r/w	ALL	0 = Writing access locked 2457 = Writing access permitted

Describes the optional features integrated into the device as well as the existence and state of the features. Note! The structure for Supported and Enabled are identical!

Default	Description					
1	Status and diagnostics complying with condensed state profile extension					
1	Status and diagnostics according to Profile 3.01					
0						
0						
Hardware version (electronics/mechanics)						

Indicates the position of the write protection switch on the device.

Used to select the ID number ... GSD file: PA139710.GSD GSD file: SAMS071D.GSD

Local operation enabled

If communication fails for a time longer than 30 seconds, local operation will be enabled automatically.

Indicates the actual mode.

Contains the firmware version (communication/control).

Indicates the revision level of static data.

This parameter is used to group blocks for their faster analysis.

Blocks are grouped by entering the same value in the STRATEGY parameter of each block.

Used to enter a user-selected text to identify and assign blocks.

Desired mode of operation

Collective command allowing a group of parameters to be read with one single read-service.

Software write protection

Parameter index

Index	Parameter
16	BLOCK_OBJECT
17	ST_REV
18	TAG_DESC
19	STRATEGY
20	ALERT_KEY

Index	Parameter
21	TARGET_MODE
22	MODE_BLK
23	ALARM_SUM
24	SOFTWARE_REVISION
25	HARDWARE_REVISION

Index	Parameter
26	DEVICE_MAN_ID
27	DEVICE_ID
28	DEVICE_SER_NUM
29	DIAGNOSIS
30	DIAGNOSIS_EXT

Index	Parameter
31	DIAGNOSIS_MASK
32	DIAGNOSIS_MASK_EXT
33	DEVICE_CERTIFICATION
34	WRITE_LOCKING
35	FACTORY_RESET

Index	Parameter
36	DESCRIPTOR
37	DEVICE_MESSAGE
38	DEVICE_INSTAL_DATE
39	LOCAL_OP_ENA
40	IDENT_NUMBER_ SELECTOR

Index	Parameter
41	HW_WRITE_ PROTECTION
42	FEATURE
43	COND_STATUS_DIAG
44	DIAG_EVENT_SWITCH
240	VIEW1

Physical Block, Slot 0 · Manufacturer-specific parameters

Parameter	Index	SK	Access	Mode	Selection/display [default value]				
CONFIG_BINARY_ INPUT_2	59	S	r/w	ALL	 0 Floating contact – DI2 1 Actively open –				
DATALOGGER_DS_1 to DATALOGGER_DS_14	111 to 124		r		Element Parameter name 0 SOLLWERT_W_1 1 ISTWERT_X_1 2 STELLSIGNAL_Y_1 3 REGELABWEICH_E_1 4 ZEIT_T_1 30 30 SOLLWERT_W_7 31 ISTWERT_X_7 32 STELLSIGNAL_Y_7 33 REGELABWEICH_E_7 34 ZEIT_T_7				

Configuration of the second binary input

- . . . The input is analyzed with the second DI Function Block.
- ... A leakage sensor is operated at the input as actively open. This information is passed on by the extended diagnostics as "External leakage may exist" and can be analyzed with Function Block DI2.
- ... A leakage sensor is operated at the input as actively closed. This information is passed on by the extended diagnostics as "External leakage may exist" and can be analyzed with Function Block DI2.
- ... The internal solenoid valve is used and the information (SV wired same as 1) is analyzed with Function Block DI2. This information is also transmitted cyclically with CHECKBACK (CB FAIL SAFE). The input is not
- ... A leakage sensor is operated at the input as actively open. This information is also transmitted cyclically with CHECKBACK (CB_ADD_INPUT). Additionally, the state of the internal solenoid valve is switched to Function
- . . . A leakage sensor is operated at the input as actively closed. This information is also transmitted cyclically with CHECKBACK (CB ADD INPUT). Additionally, the state of the internal solenoid valve is switched to Function Block DI2.
- ... A leakage sensor is operated at the input as actively open. This information can be analyzed with Function Block DI2. Additionally, the state of the internal solenoid valve is also transmitted cyclically with CHECKBACK (CB ADD INPUT).
- ... A leakage sensor is operated at the input as actively closed. This information can be analyzed with Function Block DI2. Additionally, the state of the internal solenoid valve is also transmitted cyclically with CHECKBACK (CB_ADD_INPUT).

Test function AUTO: Data logger - Data set 1

Test function AUTO: Data logger - Data set 14

Data sets 1 to 14 consisting of 7 packages (one package consisting of w, x, y, e and t variables)

DATALOGGER_DS_15	125		r		Element Parameter name 0 SOLLWERT_W_1 1 ISTWERT_X_1 2 STELLSIGNAL_Y_1 3 REGELABWEICH_E_1 4 ZEIT_T_1 5 SOLLWERT_W_2 6 ISTWERT_X_2 7 STELLSIGNAL_Y_2 8 REGELABWEICH_E_2 9 ZEIT_T_2
DEVICE_PRODUCT_NUM	51	S	r/w	ALL	
DIAG_EVENT_SWITCH_2	61	S	r/w	ALL	
DIAGNOSIS_ EXTENSION_2	60		r		Bit: 0 = false
DIAGNOSIS_EXT_1_RAW DIAGNOSIS_EXT_2_RAW	62 63		r r		
DL_TRIGGER_SELECT_BIN	135	N	r/w	ALL	0 = Binary input 1 1 = Binary input 2

Test function AUTO: Data logger - data set 15

Data set 15 consisting of 2 packages (one package consisting of w, x, y, e and t variables)

Indicates the product number of the positioner.

Further detailed information of the device, bitwise coded. More than one alarm possible at once.

Byte	Bit	Description	Byte	Bit	Description
		Restriction of working range:	3	7	Shift monotonously upwards, average
2	1	Downwards			below reference lines
2	2	Upwards	4	0	Alternating, average below ref. lines
2	3	Change not possible			Positioner/valve attachment:
2	4	Dynamic stress factor > 90 %	4	1	Travel transmission not optimal (TEST)
		Inner leakage (shut-off):	4	2	Perhaps loose
2	5	Perhaps existing	4	3	Perhaps restricted by working range
2	6	Greater than in original state (TEST)	4	4	Perhaps loose (TEST)
2	7	Greater than in original state			Working range:
		External leakage:	4	5	Mostly near closing position
3	0	Perhaps soon to be expected	4	6	Mostly near max. opening
3	1	Perhaps existing	4	7	Mostly closing position
3	2	Existing	5	0	Mostly max. opening
	_	Zero point:	5	1	Temperature below -40 °C
3	3	Shift monotonously downwards, aver-	5	2	Temperature above 80 °C
O	0	age above reference lines	5	3	Reference test canceled
3	4	Shift monotonously upwards, average	5	4	Actuator movement possible
	-	above reference lines	5	5	Actuator movement not possible
3	5	Alternating, average above ref. lines	5	6	Solenoid valve fault
3	6	Shift monotonously downwards, aver-	5	7	_
		age below reference lines			

Diagnostic alarms irrelevant of the selected classification

Binary input options for triggering in the data logger.

Note: This parameter can only be selected in firmware version K 1.11 and higher.

ET_BSZ	78		r		Elem	ent	Parameter name
					0		MESSWERT_0
					29		MESSWERT_29
					30		REFERENZWERT
ET_ENDLAGE	79		r		<u>Elem</u>	ent	Parameter name
					0		MESSWERT_0
							14F0034/FDT 00
					29 30		MESSWERT_29 REFERENZWERT
ET AVENITURETELLUNIO	77						
ET_VENTILSTELLUNG	77		r		<u>Elem</u>	enr	Parameter name
					0		MESSWERT_0
					29		MESSWERT_29
					30		REFERENZWERT
FEATURE SELECT	64	S	r/w	ALL	Bit:		
TEXTORE_DELECT			', ''	, (22		alse ·	1 = true
						D.,	
					<u>Byte</u>	Bit	
					0	0	BAD_DEVICE_FAILURE sets
							DIAG_EXT bit
					0	1	Test function activated
						'	resi function activated
					0	2	LO and active diagnostic function
						_	set GOOD_FUNCTION_CHECK
							33. 3 3 3 <u>7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 </u>
					0	3	Use DP standard diagnosis
							(6 bytes)
HISTOGRAMM_E_KURZ	70		r		Elem	ent	Parameter name
					0		E_INTERVAL_VALUE_0
					11		E_INTERVAL_VALUE_11
					12		E_AVERAGE

Statistical information AUTO: Structure for end position trend – operating hours counter

Statistical information AUTO: Structure for end position trend – drive signal

Statistical information AUTO: Structure for end position trend – valve position x

Coded bitwise, therefore several alarms at the same time possible

By selecting "DIA_MAINTENANCE_ALARM sets DIAG_EXT bit", the DIAG.ext bit (Octet 1) is set on using the profile extension "Condensed status and diagnostic messages" when a fault or the corresponding diagnostic alarm DIA_MAINTENANCE_ALARM is detected by the positioner.

Compliance with Profile 3.01 causes the DIAG.ext bit to be set when one of the following errors is detected by the

mulation) (**Note**: Firmware version K 1.11 and higher)

During a diagnosis test, the Profile indicated that a BAD_FUNCTION_CHECK has been set. This can be prevented by activating this additional function to actually set a BAD_FUNCTION_CHECK. (**Note**: Firmware version K 1.11 and higher)

positioner: Test calculation, fatal error, program loading error, no production calibration, hardware, i/p converter The activation of this function allows errors to be simulated in TROVIS-VIEW (Positioner (AO, TRD) folder (> Si-

Select whether the positioner responds to a GET_DIAG telegram with the full diagnosis (14 using as Profile or 26 as manufacturer specification) or only with 6 bytes for DP standard diagnosis (**Note**: Firmware version K 1.11 and higher)

Statistical information AUTO: Structure for short-term histogram plotting e

- 0 Setpoint deviation interval 0
- ...
- 11 Setpoint deviation interval 11
- 12 Average value e for short-term

HISTOGRAMM_E_LANG	67	r	Element 0 11 12 13 14	Parameter name E_INTERVAL_VALUE_0 E_INTERVAL_VALUE_11 E_AVERAGE NUMBER_MESS_POINTS DEVIATION_MIN
			15	DEVIATION_MAX
HISTOGRAMM_X_KURZ	69	r	Element 0 21 22	Parameter name X_INTERVAL_VALUE_0 X_INTERVAL_VALUE_21 X_AVERAGE
HISTOGRAMM_X_LANG	66	r	Element 0 21 22 23	Parameter name X_INTERVAL_VALUE_0 X_INTERVAL_VALUE_21 X_AVERAGE NUMBER_MESS_POINTS
HISTOGRAMM_Z_KURZ	71	r	Element 0 12 13	Parameter name Z_INTERVAL_VALUE_0 Z_INTERVAL_VALUE_12 Z_AVERAGE
HISTOGRAMM_Z_LANG	68	г	Element 0 12 13 14 15	Parameter name Z_INTERVAL_VALUE_0 Z_INTERVAL_VALUE_12 Z_AVERAGE TOTAL_NUMBER DYNAMIC_FACTOR
HYS_STELLSIGNAL	83	г	Element 0 1 2 3 4 5 36 37 38	Parameter name REFERENZZEITSTEMPEL TESTINFO FORTSCHRITT REFERENZWERT_VS_0 REFERENZWERT_HYST_0 WIEDERHOLUNGSWERT_HYST_0 REFERENZWERT_VS_11 REFERENZWERT_HYST_11 WIEDERHOLUNGSWERT_HYST_11

Statistic	cal information AUTO: Structure for long-term histogram plotting e
0	Setpoint deviation interval 0
 11	Saturated deviation interval 11
12	Setpoint deviation interval 11
13	Average value e for long-term Number of measuring points
14	Min. setpoint deviation
15	Max. setpoint deviation
	tal information AUTO: Structure for short-term histogram plotting x
0	Valve position interval 1
21	Valve position interval 21
22	Average value x for short-term
	cal information AUTO: Structure for long-term histogram plotting x
0	Valve position interval 0
21	Valve position interval 21
22	Average value x for long-term
23	Number of measuring points
	cal information AUTO: Structure for short-term histogram plotting z
0	Cycle counter interval 0
12	Cycle counter interval 12
13	Average value z for short-term
	tal information AUTO: Structure for long-term histogram plotting z
0	Cycle counter interval 0
 12	Cycle counter interval 12
13	Average value z for long-term
14	Number of measuring points
15	Dynamic stress factor

Tests MAN: Drive signal diagram hysteresis

HYSTERESE_KURZ	76		r		Element	Parameter name
					0	STELLSIGNAL_0
					0	VENTILSTELLUNG_0
						CTELLCIONIAL O
					9	Stellsignal_9 Ventilstellung 9
HYSTERESE_LANG	75		r		Element	Parameter name
THOTEKEOL_LAINO	/3		'		0	MITTELWERT_0
						MITTEL VERT_O
					18	MITTELWERT_18
IDENT_LIMIT_SWITCHES	50	S	r/w	ALL	0 = Not inst	talled
					1 = Installed	<u> </u>
IDENT_OPTIONS	49		r			of the options installed
						input 2 installed
						d valve installed re limit switch installed
						ptions 4 to 8 installed
PRODUCTION_ID	57	S	r/w	ALL		
READING_DIRECTION	58	S	r/w	ALL		
SPRUNGANTWORT E 1	103		r			
to	to					
SPRUNGANTWORT_E_4	106		r			
SPRUNGANTWORT_SS_1	101		r			
SPRUNGANTWORT_SS_2	102		r			
SPRUNGANTWORT_SW_1	97		r			
to CDDI IN IC AN IT A/ODT SAA/ A	to					
SPRUNGANTWORT_SW_4	100		r			
SPRUNGANTWORT_VS_1 to	93		r			
SPRUNGANTWORT_VS_4	to 96		r			
SPRUNGANTWORT ZEIT 1	107		r			
to	to		'			
SPRUNGANTWORT_ZEIT_4			r			
STAT_AGAIN_VS	81		r			
STAT_KENNLINIE_R	84		r		Element	Parameter name
STAT_KENNLINIE_SW_1	89		r		Element	Parameter name
to	to				0	MESSWERT_0
STAT_KENNLINIE_SW_4	92		r			14500145DT 0.4
					24	MESSWERT_24

Tests MAN: Static characteristic - Setpoint (data set 4)

Statistical information AUTO: Structure for drive signal diagram hysteresis in short-term monitoring Statistical information AUTO: Structure for drive signal diagram hysteresis in long-term monitoring Describes whether the optional inductive limit switch is installed. Not automatically recognized. Describes whether the optional forced venting and binary input 2 are installed. The reading on the display is turned by 180°. Tests MAN: Step response – Setpoint deviation (data set 1) Tests MAN: Step response - Setpoint deviation (data set 4) Tests MAN: Step response – Drive signal (data set 1) Tests MAN: Step response – Drive signal (data set 2) Tests MAN: Step response - Setpoint (data set 1) Tests MAN: Step response - Setpoint (data set 4) Tests MAN: Step response - Valve position (data set 1) Tests MAN: Step response - Valve position (data set 4) Tests MAN: Step response – Time (data set 1) Tests MAN: Step response – Time (data set 4) Tests MAN: Drive signal diagram in steady-state - Repetition value of valve position Tests MAN: Static characteristic Tests MAN: Static characteristic – Setpoint (data set 1)

STAT_KENNLINIE_VS_1 to	85 to		r			
STAT_KENNLINIE_VS_4	88		r			
STAT_REF_VS	80		r			
STAT_STELLSIGNAL	82		r		Element 0 1 2 3 4 51 52	Parameter name REFERENZZEITSTEMPEL TESTINFO FORTSCHRITT REFERENZWERT_0 WIEDERHOLUNGSWERT_0 REFERENZWERT_24 WIEDERHOLUNGSWERT_24
STATIONAER_KURZ	73		r		Element 0 21	Parameter name MITTELWERT_0 MITTELWERT_21
STATIONAER_KURZ_RP	74		r		Element 0 0 9 9	Parameter name STELLSIGNAL_0 VENTILSTELLUNG_0 STELLSIGNAL_9 VENTILSTELLUNG_9
STATIONAER_LANG	72		r			-
TEST_FUNCTION	65	N	r/w	ALL		
TEXT_INPUT 1 to TEXT_INPUT 5	52 to 56	S	r/w r/w	ALL		

Tests MAN: Static characteristic - Valve position (data set 1)

Tests MAN: Static characteristic – Valve position (data set 4)

Tests MAN: Drive signal diagram in steady-state - Reference valve position

Tests MAN: Drive signal diagram in steady-state - Drive signal (reference and repetition values)

Statistical information AUTO: Structure for drive signal diagram in steady-state in short-term monitoring

Statistical information AUTO: Structure for drive signal diagram in steady-state in short-term monitoring Ring buffer values, containing drive signal and valve position

Statistical information AUTO: Structure for drive signal diagram in steady-state in long-term monitoring

For test purposes only - Simulation of all error bits

Function needs to be activated in FEATURE_SELECT parameter.

User-definable text fields

Parameter index

Index	Parameter
49	IDENT_OPTIONS
50	IDENT_LIMIT_SWITCHES
51	DEVICE_PRODUCT_NUM
52	TEXT_INPUT_1
53	TEXT_INPUT_2
54	TEXT_INPUT_3
55	TEXT_INPUT_4
56	TEXT_INPUT_5
57	PRODUCTION_ID
58	READING_DIRECTION
59	CONFIG_BINARY_ INPUT_2
60	DIAGNOSIS_ EXTENSION_2
61	DIAG_EVENT_SWITCH_2
62	DIAGNOSIS_EXT_1_RAW

Index	Parameter
63	DIAGNOSIS_EXT_2_RAW
64	FEATURE_SELECT
65	TEST_FUNCTION
66	HISTOGRAMM_X_LANG
67	HISTOGRAMM_E_LANG
68	HISTOGRAMM_Z_LANG
69	HISTOGRAMM_X_KURZ
70	HISTOGRAMM_E_KURZ
71	HISTOGRAMM_Z_KURZ
72	STATIONAER_LANG
73	STATIONAER_KURZ
74	STATIONAER_KURZ_RP
75	HYSTERESE_LANG
76	HYSTERESE_KURZ
77	ET_VENTILSTELLUNG

Index	Parameter
78	ET_BSZ
79	ET_ENDLAGE
80	STAT_REF_VS
81	STAT_AGAIN_VS
82	STAT_STELLSIGNAL
83	HYS_STELLSIGNAL
84	STAT_KENNLINIE_R
85	STAT_KENNLINIE_VS_1
86	STAT_KENNLINIE_VS_2
87	STAT_KENNLINIE_VS_3
88	STAT_KENNLINIE_VS_4
89	STAT_KENNLINIE_SW_1
90	STAT_KENNLINIE_SW_2
91	STAT_KENNLINIE_SW_3
92	STAT_KENNLINIE_SW_4

Index	Parameter
93	SPRUNGANTWORT_VS_1
94	SPRUNGANTWORT_VS_2
95	SPRUNGANTWORT_VS_3
96	SPRUNGANTWORT_VS_4
97	SPRUNGANTWORT_ SW_1
98	SPRUNGANTWORT_ SW_2
99	SPRUNGANTWORT_ SW_3
100	SPRUNGANTWORT_ SW_4
101	SPRUNGANTWORT_SS_1
102	SPRUNGANTWORT_SS_2
103	SPRUNGANTWORT_E_1
104	SPRUNGANTWORT_E_2
105	SPRUNGANTWORT_E_3

Index	Parameter
106	SPRUNGANTWORT_E_4
107	SPRUNGANTWORT_ ZEIT_1
108	SPRUNGANTWORT_ ZEIT_2
109	SPRUNGANTWORT_ ZEIT_3
110	SPRUNGANTWORT_ ZEIT_4
111	DATALOGGER_DS_1
112	DATALOGGER_DS_2
113	DATALOGGER_DS_3
114	DATALOGGER_DS_4
115	DATALOGGER_DS_5
116	DATALOGGER_DS_6
117	DATALOGGER_DS_7
118	DATALOGGER_DS_8

Index	Parameter
119	DATALOGGER_DS_9
120	DATALOGGER_DS_10
121	DATALOGGER_DS_11
122	DATALOGGER_DS_12
123	DATALOGGER_DS_13
124	DATALOGGER_DS_14
125	DATALOGGER_DS_15
135	DL_TRIGGER_SELECT_ BIN

AO Function Block, Slot 1 · Profile-specific parameters

Parameter	Index	SK	Access	Mode	Selection/display [default value]
ALARM_SUM	23		r		
ALERT_KEY	20	S	r/w	ALL	
BATCH	24	S	r/w	ALL	
BLOCK_OBJECT	16		r		
CHECK_BACK *	37		r		
CHECK_BACK_MASK	38		r		Bit = 0: Status not supported
					Bit = 1: Status supported
FSAFE_TIME	31	S	r/w	ALL	
FSAFE_TYPE	32	S	r/w	ALL	
					0
					2
FSAFE_VALUE	33	S	r/w	ALL	
IN_CHANNEL	29	S	r/w	ALL	
					0 0x013A
INCREASE_CLOSE	40	S	r/w	ALL	0 = Increasing/Increasing
					1 = Increasing/Decreasing
MODE_BLK	22		r		
OUT	41	S	r/w	ALL	
OUT_CHANNEL	30	S	r/w	ALL	
000			', ''	, (22	0
					0x0139
OUT_SCALE	42	S	r/w	ALL	

Indicates the current states of the process alarms in the AO Function Block.

Contains the ID number of the plant unit.

Contains the identification of the batch process.

Detailed information of the device, coded bitwise, refer to section 12.3

Defines the supported status bits in CHECK BACK.

Time in seconds taken until a communication failure is detected.

The fail-safe condition is met if no valid communication is detected within the time entered in FSAFE_TIME.

Defines the reaction to be taken when a communication failure or start-up is detected.

- . . . The default value FSAFE VALUE is used
- . . . The last valid setpoint is used/The last valid setpoint is saved
- . . . Actuator moves to the fail-safe position defined by the actuator springs

Default value for setpoint (reference variable w) used when a communication failure or start-up is detected.

The assignment between the Transducer Block and the Function Block

- . . . Not active
- . . . Active (FEEDBACK VALUE is written to READBACK)

Determines the direction of action, i.e. how the reference variable is assigned to the controlled variable.

Mode of operation of the positioner

Positioning value

This positioning value is calculated by the Function Block from the SETPOINT for the Transducer Block in [mm], [degrees] or [%]

The assignment between the Transducer Block and the Function Block

- Not active
- . . . Active (OUT is written to POSITIONING VALUE)

Travel range or rotational angle range

Top and bottom values of the actual working range in [mm] or [degrees]. A non-linear characteristic is adapted to the reduced travel.

Maximum value for the top value = Rated travel

Parameter	Index	SK	Access	Mode	Selection/display [default value]
POS_D *	35		r		 Not initialized Closed (x < 0.5 %) Opened (x > 99.5 %) Intermediate position
PV_SCALE	26	S	r/w	ALL	
RCAS_IN *	28	S	r/w	ALL	Range defined in PV_SCALE
RCAS_OUT *	34		r		Range defined in PV_SCALE
READBACK *	27		r		Range defined in PV_SCALE
SETP_DEVIATION	36		r		
SIMULATE	39	S	r/w	ALL	
SP*	25	S	r/w	ALL	Range defined in PV_SCALE
ST_REV	17		r		
STRATEGY	19	S	r/w	ALL	
TAG_DESC	18	S	r/w	ALL	[32 user-definable characters]
TARGET_MODE	21	S	r/w	ALL	8 = AUTO (automatic) 16 = MAN (manual) 128 = O/S (out of service)
VIEW1	240		r		

Current position of the valve (discrete)

Range of the reference variable

Setpoint with status: Reference variable w in RCAS mode

Provided by a supervisory host, e.g. PID Block or Master Class 1. Depending on mode of the Function Block.

Setpoint with status: Reference variable w in RCAS mode

Provided to a supervisory host, e.g. PID Block or Master Class 1. Depending on mode of the Function Block.

Current position with status: Controlled variable x in relation to travel range/angle of rotation (OUT_SCALE)

Setpoint deviation [%]

Simulation

Simulation of a value/status for READBACK

Setpoint with status: Setting of the valve position between open and closed.

Reference variable w in AUTO mode

Indicates the revision level of static data.

This parameter is used to group blocks for their faster analysis.

Blocks are grouped by entering the same value in the STRATEGY parameter of each block.

Used to enter a user-selected text to identify and assign blocks.

Desired mode of operation of the positioner

Collective command allowing a group of parameters to be read with one single read-service.

Parameter index

Index	Parameter
16	BLOCK_OBJECT
17	ST_REV
18	TAG_DESC
19	STRATEGY
20	ALERT_KEY

Index	Parameter				
21	TARGET_MODE				
22	MODE_BLK				
23	ALARM_SUM				
24	BATCH				
25	SP				

Index	Parameter
26	PV_SCALE
27	READBACK
28	RCAS_IN
29	IN_CHANNEL
30	OUT_CHANNEL

AO Function Block, Slot 1 · Manufacturer-specific parameters

Parameter	Index	SK	Access	Mode	Selection/display [default value]
CHECK_BACK_OPT	65	S	r/w	ALL*	[0x8F, 0xEC, 0x83]
					Bit = 0: Status not supported
					Bit = 1: Status supported

Index	Parameter
31	FSAFE_TIME
32	FSAFE_TYPE
33	FSAFE_VALUE
34	RCAS_OUT
35	POS_D

Index	Parameter
36	SETP_DEVIATION
37	CHECK_BACK
38	CHECK_BACK_MASK
39	SIMULATE
40	INCREASE_CLOSE

Index	Parameter
41	OUT
42	OUT_SCALE
240	VIEW1

Defines the support of the status bit in CHECK_BACK for cyclic data exchange.

* This alarm does not apply for an acyclic access.

AO Transducer Block, Slot 1 · Profile-specific parameters

Parameter	Index	SK	Access	Mode	Selection/display [default value]
ACT_STROKE_TIME_DEC	89		r		[1.0 s]
ACT_STROKE_TIME_INC	90		r		[1.0 s]
ACTUATOR_ACTION	143	S	r/w	ALL	0 = Not initialized 1 = Opening (towards 100 % position) 2 = Closing (towards 0 % position) 3 = None/saving (position remains kept)
ACTUATOR_MAN	140	S	r/w	ALL	
ACTUATOR_SER_NUM	145	S	r/w	ALL	
ACTUATOR_TYPE	142		r		0 = Electropneumatic 1 = Electric 2 = Electrohydraulic 3 = Other
ADD_GEAR_ID	148	S	r/w	ALL	
ADD_GEAR_INST_DATE	149	S	r/w	ALL	
ADD_GEAR_MAN	147	S	r/w	ALL	
ADD_GEAR_SER_NUM	146	S	r/w	ALL	
ALARM_SUM	87		r		[0]
ALERT_KEY	84	S	r/w	ALL	[0]
BLOCK_OBJECT	80		r		
DEVICE_CALIB_DATE	103	S	r/w	ALL	[XX.XX.20XX]
DEVICE_CONFIG_DATE	104	S	r/w	ALL	[XX.XX.20XX]
FEEDBACK_VALUE	138		r		Unit of the OUT_SCALE

Specifies the minimum transit time to reach CLOSED position [s] (Code 41)

The minimum transit time to reach CLOSED (0 % position) position is the actual time in seconds that the system (consisting of positioner, actuator and valve) needs to move through the rated travel range/angle of rotation to close the valve (measured during initialization).

Specifies the minimum transit time to reach OPEN position [s] (Code 40)

The minimum transit time to reach OPEN (100 % position) position is the actual time in seconds that the system (consisting of positioner, actuator and valve) needs to move through the rated travel range/angle of rotation to open the valve (measured during initialization).

Sets the fail-safe action to be performed by the actuator in case of a supply air failure, determined automatically during initialization.

Actuator manufacturer

Specifies the serial number of the actuator used with the positioner.

Type of actuator

Manufacturer ID of any additional components

Date of installation of any additional components

Manufacturer of any additional components

Serial number of any additional components

Indicates current state of process alarms in the AO Transducer Block.

Contains the ID number of the plant unit.

Indicates the date of the last calibration of the field device.

Indicates the date of the last configuration of the field device.

Indicates the current valve position.

Parameter	Index	SK	Access	Mode	Selection/display [default value]
LIN_TYPE	105	S	r/w	ALL	0 = Linear 1 = Equal percentage 2 = Equal percentage reverse 3 = User defined (currently not supported) 4 = SAMSON control butterfly valve linear 5 = SAMSON control butterfly valve eq. percent. 6 = Vetec rotary plug valve linear 7 = Vetec rotary plug valve eq. percent.
MODE_BLK	86		r		
POSITIONING_VALUE	137		r		Unit of the OUT_SCALE
RATED_TRAVEL	112	S	r/w	ALL	[15.0 mm]
SELF_CALIB_CMD	113	S	r/w	ALL	0 = No test, normal operation 1 = - 2 = Start initialization 3 = Cancel initialization 4 = Start zero point calibration 5 = Cancel zero point calibration 6 = Search for device: "HERE I AM" on display 7 = Reset "Total valve travel exceeded" 8 to 22 = No function 23 = Reset "Control loop" 24 = Reset "Zero point" 25 = Reset "Autocorrection" 26 = Reset "Fatal error" 27 = No function 28 = Reset "x > range" 29 = Reset "Delta x < range" 30 = Reset "Attachment"

Type of characteristic (Code 20)

Mode of operation of the positioner

Indicates the current positioning value.

Specifies the rated travel [mm] or rotational angle [degrees] of the valve.

Command to start the manufacturer-specific calibration routine in the field device.

- 31 = Reset "Initialization time exceeded"
- 32 = Reset "Initialization/solenoid valve"
- 33 = Reset "Travel time too short"
- 34 = Reset "Pin position"
- 35 to 39 = No function
- 40 = Reset "x signal"
- 41 = Reset "i/p converter"
- 42 = Reset "Hardware"
- 43 = Reset "Control parameter"
- 44 = Reset "Poti parameter"
- 45 = Reset "Calibration"
- 46 = Reset "General parameters"
- 47 = Reset "Internal device error 1"
- 48 = Reset "No emergency mode"
- 49 = Reset "Program loading error"

- 50 = Reset "Option parameter"
- 51 = Reset "Info parameter"
- 52 = Reset "Data memory"
- 53 = Reset "Test calculation"
- 54 = No function
- 55 = Reset "Diagnostic parameter"
- 56 to 59 = No function
- 60 = Reset "Counter Reset device start up"
- 61 = Reset "Communication controller"
- 62 = Reset "Counter Reset communication controller"

 -> SW W DOG triggered
- 63 = Reset "Control parameter"
- 64 = Reset "Counter Reset control loop controller"
- 65 = Reset "Alarm bus link"
- 66 = Reset "Counter Reset bus link"

Parameter	Index	SK	Access	Mode	Selection/display [default value]
SELF_CALIB_STATUS	114		r		[0]
					0 = Undetermined 1 = In progress 2 = Canceled 3 = Range incorrect 4 = Error in mechanics/pneumatics 5 = Gain error 6 = Offset error 7 = Calibration sequence mixed up
SERVO_GAIN_1	115	S	r/w	ALL	[7]
SERVO_RATE_1	116	S	r/w	ALL	[2]
SETP_CUTOFF_DEC	118	S	r/w	ALL	[0.0 %]
SETP_CUTOFF_INC	119	S	r/w	ALL	[125.0 %]
ST_REV	81		r		[0]
STRATEGY	83	S	r/w	ALL	[0]
TAG_DESC	82	S	r/w	ALL	[32 characters]
TARGET_MODE	85	S	r/w	ALL	[8] = AUTO (automatic) 16 = MAN (manual) 128 = O/S (out of service)
TOT_VALVE_TRAV_LIM	126	S	r/w	ALL	[1000000.0]
TOTAL_VALVE_TRAVEL	125		r		[0.0]
TRAVEL_LIMIT_LOW	127	S	r/w	ALL	[0.0 %]
TRAVEL_LIMIT_UP	128	S	r/w	ALL	[100.0 %]

Manufacturer-specific status of the sequence started with SELF_CALIB_CMD parameter

Note: During the zero point key test, this parameter gets the switching state of the zero point key.

- 11 = Time out
- 12 = Proportional range restricted too much
- 13 = Rated travel or transmission incorrectly selected
- 14 = Mechanics system stuck (during initialization)
- 15 = Pneumatics system leaks (during initialization)
- 16 = Action interrupted as a production test has not yet been performed successfully
- 17 = Ínitialization status: Mechanical stops determined

- 18 = Initialization status: Minimum control pulse determined
- 19 = Initialization status: Minimum transit times determined
- 20 = Initialization canceled by activation of forced venting
- 30 = Zero point error
- 254 = Successful
- 255 = No valid data from the application

K_P step (Code 17)

T_V step (Code 18)

Final position w < (Code 14)

If the reference variable exceeds the entered value, the valve moves towards the final position which corresponds to 0 % reference variable.

Electropneumatic actuators are completely filled with air or vented (depending on the fail-safe position).

Final position w > (Code 15)

If the reference variable exceeds the entered value, the valve moves towards the final position which corresponds to 100 % reference variable.

Electropneumatic actuators are completely filled with air or vented (depending on the fail-safe position).

Indicates the revision level of static data.

This parameter is used to group blocks for their faster analysis.

Blocks are grouped by entering the same value in the STRATEGY parameter of each block.

Used to enter a user-selected text to identify and assign blocks.

Desired mode of operation

Limit value for the total valve travel (Code 24)

Totaled double valve travel (Code 23)

Limitation of the travel/angle of rotation [% of working range PV_SCALE] (Code 10) downwards to the entered value; The characteristic is not adapted.

Limitation of the travel/angle of rotation [% of working range PV_SCALE] (Code 11) upwards to the entered value; The characteristic is not adapted.

Parameter	Index	SK	Access	Mode	Selection/display [default value]
TRAVEL_RATE_DEC	129	S	r/w	ALL	[0.0 s]
TRAVEL_RATE_INC	130	S	r/w	ALL	[0.0 s]
VALVE_MAINT_DATE	131	S	r/w	ALL	[XX.XX.20XX]
VALVE_MAN	139	S	r/w	ALL	
VALVE_SER_NUM	144	S	r/w	ALL	
VALVE_TYPE	141	S	r/w	ALL	
					0
VIEW1	241		r		

Parameter index

Index	Parameter
80	BLOCK_OBJECT
81	ST_REV
82	TAG_DESC
83	STRATEGY
84	ALERT_KEY
85	TARGET_MODE
86	MODE_BLK

Index	Parameter
87	ALARM_SUM
89	ACT_STROKE_TIME_DEC
90	ACT_STROKE_TIME_INC
103	DEVICE_CALIB_DATE
104	DEVICE_CONFIG_DATE
105	LIN_TYPE
112	RATED_TRAVEL

Index	Parameter
113	SELF_CALIB_CMD
114	SELF_CALIB_STATUS
115	SERVO_GAIN_1
116	SERVO_RATE_1
118	SETP_CUTOFF_DEC
119	SETP_CUTOFF_INC
125	TOTAL_VALVE_TRAVEL

Required transit time CLOSED [s]

Minimum time required to move through the working range to 0 % position

Required transit time OPEN [s]

Minimum time required to move through the working range to 100 % position

Date of the last maintenance performed on the field device

Valve manufacturer

Serial number of the valve that the positioner is mounted on

Type of valve

- . . . Valve with straight-moving plug
- . . . Valve with rotary moving plug (part-turn)
- . . . Valve with rotary moving plug (multi-turn)

Collective command allowing a group of parameters to be read with one single read-service.

Index	Parameter
126	TOT_VALVE_TRAV_LIM
127	TRAVEL_LIMIT_LOW
128	TRAVEL_LIMIT_UP
129	TRAVEL_RATE_DEC
130	TRAVEL_RATE_INC
131	VALVE_MAINT_DATE
137	POSITIONING_VALUE

Index	Parameter
138	FEEDBACK_VALUE
139	VALVE_MAN
140	ACTUATOR_MAN
141	VALVE_TYPE
142	ACTUATOR_TYPE
143	ACTUATOR_ACTION
144	VALVE_SER_NUM

Index	Parameter
145	ACTUATOR_SER_NUM
146	ADD_GEAR_SER_NUM
147	ADD_GEAR_MAN
148	ADD_GEAR_ID
149	ADD_GEAR_INST_DATE
241	VIEW1

AO Transducer Block, Slot 1 · Manufacturer-specific parameters

Parameter	Index	SK	Access	Mode	Selection/c	display [default value]
AUTOSTART_HYST	194	S	r/w	ALL		
BLOCKING_POSITION	166	S	r/w	ALL		
CHARACT_TYPE	173	S	r/w	ALL		
CLOSING_DIRECTION	165	S	r/w	ALL		
COUNTER_INIT_START	198		r			
DATALOGGER	185		r		Element	Parameter name
					0 1 2 3 4 5	DATALOGGER_SELECT TRIGGER_SELECT SAMPLE_RATE START_VALUE LOGGING_LIMIT PRETRIGGER_TIME
DATALOGGER_READ	186		r		Element 0 1 2 3 4 5 6 7	Parameter name TESTINFO MAX_PRETRIGGERZEIT FORTSCHRITT ZÄHLER_TAGE ZÄHLER_STUNDEN ZÄHLER_MINUTEN ZÄHLER_SEKUNDEN ZÄHLER_SEKUNDEN ZÄHLER_100msTAKT
DELAY_TIME	181	S	r/w	ALL	[30]	

Indicates the minimum interval to perform the hysteresis test (EXPERT+).

Indicates and modifies the blocking position.

Type of characteristic.

Text field (32 characters) to describe the characteristic used

Indicates and modifies the closing direction.

Specifies the number of initialization cycles that have been performed since the last reset.

Structure of read and write parameters of the data logger (EXPERT+)

Structure of read parameters of the data logger (EXPERT+)

- 0. . Test information
- 1. . Max. pretrigger time
- 2. . Progress
- 3. Day counter
- 4. Hour counter
- Minute counter
 Second counter
- 7. . 100 ms tact counter

Specifies the delay time (reset criterion when closed-loop operation monitoring is in progress). If the entered DELAY_TIME is exceeded and the system deviation is outside the specified TOLERANCE_BAND, a control loop error is indicated. Determined from the minimum transit time during initialization.

Parameter	Index	SK	Access	Mode	Selection/display [default value]
DEVICE_CHARACT	202	S	r/w	ALL	Element Parameter name 0 ACTUATOR_SIZE 1 ACTUATOR_VERSION 2 ATTACHMENT 3 PRESSURE_RANGE_START 4 PRESSURE_RANGE_END 5 SUPPLY_PRESSURE 6 BOOSTER 7 STUFFING_BOX 8 SEALING_EDGE 9 PRESSURE_BALANCING 10 FLOW_CHARACTERISTC 11 FLOW_DIRECTION 12 NOM_DIAMETER 13 NOM_DIAMETER 13 NOM_DIAMETER 14 KVS_UNIT 15 KVS_VALUE 16 SEAT_DIAM_VALVE
DEVICE_INIT_STATE	163		r		
DIAG_TESTINFO	201		r		0 = No active test 1 = d1 Drive signal diagram steady-state 2 = d2 Drive signal diagram hysteresis 4 = d3 Static characteristic
DIAGNOSE_LEVEL	195		r		EXPERT Standard diagnostics EXPERT+Extended diagnostics ESD Emergency Shutdown
ELAPSED_HOURS_ METERS	193		r		Element Parameter name 0 ELAPSED_HOURS_METER 1 DEVICE_IN_CLOSED_LOOP 2 POWER_ON_SINCE_INIT 3 DEVICE_IN_CLOSED_LOOP_ SINCE_LAST_INIT

Structure of the device properties

- 0 Actuator effective area
- 1 Type of actuator
- 2 Attachment
- 3 Lower signal pressure range value
- 4 Upper signal pressure range value
- 5 Supply pressure
- 6 Booster
- 7 Stem packing
- 8 Plug/seat facing (leakage class)
- 9 Pressure balancing
- 10 Flow characteristic
- 11 Direction of flow
- 12 Nominal size standard
- 13 Nominal size DN
- 14 K_{VS} unit
- 15 K_{VS} coefficient
- 16 Seat diameter of the valve

Indicates whether the device has been initialized.

Info parameter concerning an active diagnostic test running (EXPERT+)

- 8 = d4 Step response test
- 16 = d5 Hysteresis online test activated
- 32 = d5 Hysteresis online test running
- 64 = Permanent data logging

- 128 = Triggered data logging
 - 256 = Reference test
 - 516 = All tests started automatically in sequence

Indicates the diagnostic level.

Operating hours counter

- 0. . Operating hours: Device switched on
- 1. . Operating hours: Device in closed-loop operation
- 2. . Operating hours: Device switched on since the last initialization
- 3. . Operating hours: Device in closed-loop operation since the last initialization

Parameter	Index	SK	Access	Mode	Selection/display [default value]
ENHANCED_DIAG_CMD	192	S	r/w	ALL	0 = No function 1 = Start data logging 2 = Stop data logging 3 = Start hysteresis online test 4 = Stop hysteresis online test 5 = Start step response test 6 = Stop step response test 7 = Start all tests automatically in sequence 8 = Stop tests 9 = Start drive signal test in steady-state 10 = Stop drive signal test in steady-state 11 = Start drive signal test in hysteresis 12 = Stop drive signal test in hysteresis 13 = Start static characteristic test 14 = Stop static characteristic test 15 = Start reference test 16 = Stop reference test
EVENT_LOGGING_1 EVENT_LOGGING_2	190 191		r r		Element Parameter name 0 MESSAGES_015 1 ELAPSED_HOURS_METER_015 29 MESSAGE_1429 30 ELAPSED_HOURS_METER_1429
FINAL_POSITION_VALUE	183		r		
FINAL_VALUE	184	S	r/w	ALL	
FINAL_VALUE_RANGE	179	S	r/w	ALL	[0.0 to 100.0] EU_100 (Code 9) EU_0 (Code 8) UNITS_INDEX DECIMAL
HISTOGRAMM_E_ ABTASTRATE	200	S	r/w	ALL	
HISTOGRAMM_X_ ABTASTRATE	199	S	r/w	ALL	

Extended diagnostic tests

- 17 = Reset "Data logging"
- 18 = Reset all diagnostic information
- 19 = Reset "Operating hours counter"
- 20 = Reset temperature information
- 21 = Reset "Travel histogram long-term monitoring"
- 22 = Reset "Cycle counter histogram long-term monitoring"
- 23 = Reset "Setpoint deviation histogram long-term monitoring"
- 24 = Reset "y x long-term monitoring"
- 25 = Reset "y x short-term monitoring"
- 26 = Reset "Drive signal diagram hysteresis - long-term monitoring"
- 27 = Reset "End position trend"

- 28 = Reset "End position reference values"
- 29 = Reset "Travel histogram short-term monitoring"
- 30 = Reset "Setpoint deviation histogram short-term monitoring"
- 31 = Reset "Cycle counter histogram short-term monitoring"
- 32 = Reset "Drive signal diagram hysteresis short-term monitoring"
- 33 = Reset "y x reference values"
- 34 = Reset "Reference measurement hysteresis"
- 35 = Reset "Data logger"
- 36 = Reset "Static characteristic"
- 37 = Reset "Step response"
- 38 = Reset "y x measured data"
- 39 = Reset "Drive signal diagram hysteresis measured data"

Data sets 1/2 of the event logging (EXPERT+)

- O Alarm recording 0...15
 - Time stamp of recorded alarms 1...15
- 29 Alarm recording 14...29
- 30 Time stamp of recorded alarms 14...29

Specifies the current valve position in % in relation to the operating range FINAL_VALUE_RANGE.

Contains the output value received from the upstream Analog Output Function Block.

This parameter sets the travel range/angle of rotation. The set point FINAL_VALUE is sent to the Analog Output Transducer Block directly from an upstream AO Function Block.

Scan rate for setpoint deviation histogram for short-term monitoring (EXPERT+)

Scan rate for travel histogram for short-term monitoring (EXPERT+)

Parameter	Index	SK	Access	Mode	Selection/display [default value]
INIT_METHOD	161	S	r/w	ALL	0 = Maximum range 1 = Nominal range 2 = Manual adjustment 3 = Substitute 4 = Zero point
MOVING_DIRECTION	164	S	r/w	ALL	
NO_OF_ZERO_ POINT_ADJ	196		r		
PIN_POSITION	160	S	r/w	ALL	
PRESSURE_LIMIT	177	S	r/w	ALL	1 = Off 2 = 3.7 bar 3 = 2.4 bar 4 = 1.4 bar
SELF_CALIB_WARNING	167		r		[0]
SET_FAIL_SAFE_POS	178	S	r/w	ALL	0 = Not active 1 = Set fail-safe position 2 = Clear fail-safe position
SETP_CUTOFF_DEC_ON	171	S	r/w	ALL	
SETP_CUTOFF_INC_ON	170	S	r/w	ALL	
SIGNAL_PRESSURE_ ACTION	176	S	r/w	ALL	
STAT_KENNLINIE_RW	204	S	r/w	ALL	Element Parameter name 0 START 1 ENDE 2 WARTEZEIT_NACH_SPRUNG 3 ANZAHL_BIS_UMKEHR
STATUS_SOLENOID_ VALVE	182		r		

Used to select the type of initilization

Direction of operation, i.e. how the reference variable w is assigned to the controlled variable x

Indicates the number of zero point calibrations since the last initialization.

This pin position needs to be entered for initialization in NOM or SUb operating modes.

The follower pin must be place in the correct pin position depending on the valve travel/rotational angle. Refer to Table Code 4, on page 114.

Used to enter the pressure limit (Code 16).

Information on any initialization errors

Allows the valve to be moved to its actual fail-safe position over the bus. The positioner remains, however, still in AUTO mode. Fail-safe position is indicated by an S blinking on the display.

Note: An S blinking on the display also indicates an invalid setpoint (bad status).

Activate/deactivate the final position when w falls belows the adjusted valve.

Activate/deactivate the final position when w exceeds the adjusted valve.

This parameter is determined during initialization and indicates the position of the slide switch (AIR TO OPEN/CLOSE). The positioner needs to be re-initialized when the switch position is changed.

Contains parameters for static characteristic test (d3) which can be read and written.

- 0. Start
- 1. . End
- 2. . Waiting time after step
- 3. Number of measurements until return

Indicates the status of the solenoid valve (Code 45).

Parameter	Index	SK	Access	Mode	Selection/di	isplay [default value]
STEP_RESPONSE_R	188		r		Element	Parameter name
					0 1 2 3 4 5 6 7 8 9 10 11 12 13	OVERSHOOT_RISING OVERSHOOT_FALLING DEAD_TIME_RISING DEAD_TIME_FALLING TIME_63_RISING TIME_63_FALLING TIME_98_RISING TIME_98_FALLING STEP_PROGRESS RISE_TIME_FALLING SETTLING_TIME_FALLING RISE_TIME_RISING DURATION_OF_TEST TESTINFO
STEP_RESPONSE_RW	189	S	r/w	ALL	Element	Parameter name
					0 1 2 3 5 6 7	STEPSTART STEPEND STEP_SAMPLE_RATE RAMPE_UP RAMPE_DOWN LATENCY_AFTER_STEP STEP_SELECTION
SUB_MODE_INIT	162		r			
TEMP_MONITORING	187		r		Element	Parameter name
					0 1 2 3 4 5	CURRENT_TEMP MAX_TEMP TIME_MAX_TEMP MIN_TEMP TIME_MIN_TEMP PERIOD_TIME_HIGH PERIOD_TIME_LOW
TOLERANCE_BAND	180	S	r/w	ALL	0.1 to 10 %	

Des		

Structure of reading parameters for step response test (EXPERT+)

Structure of reading and writing parameters for the step response test (EXPERT+)

- Step start
- Step end
- Scan rate
- 3 Ramp time rising
- Ramp time falling
- Delay time after step 6
- Number of steps 7

Indicates whether an initialization has been performed in SUb mode.

Structure containing parameters concerning the temperature.

- Current temperature
- Maximum temperature
- Maximum temperature (point in time)
- Minimum temperature
- Minimum temperature (point in time) 4
- Period of duration (max. temperature) 6
 - Period of duration (min. temperature)

(Code 19)

Parameter	Index	SK	Access	Mode	Selection/display [default value]
TRANSDUCER_STATE	172		r		[0] = See operating mode 1 = Solenoid valve active 2 = Lower travel limit active (Code 10) 3 = Upper travel limit active (Code 11) 4 = End position < active (Code 14) 5 = End position > active (Code 15) 7 = Fail-safe position active 255 = Normal operation
TRAVEL_LIMIT_LOW_ON	168	S	r/w	ALL	
TRAVEL_LIMIT_UP_ON	169	S	r/w	ALL	
USER_CHARACT	203	S	r/w	ALL	Element Parameter name 0
ZERO_POINT_LIMIT	197	S	r/w	ALL	

Parameter index

Index	Parameter
160	PIN_POSITION
161	INIT_METHOD
162	SUB_MODE_INIT
163	DEVICE_INIT_STATE
164	MOVING_DIRECTION
165	CLOSING_DIRECTION
166	BLOCKING_POSITION
167	SELF_CALIB_WARNING

Index	Parameter
168	TRAVEL_LIMIT_LOW_ON
169	TRAVEL_LIMIT_UP_ON
170	SETP_CUTOFF_INC_ON
171	SETP_CUTOFF_DEC_ON
172	TRANSDUCER_STATE
173	CHARACT_TYPE
176	SIGNAL_PRESSURE_ ACTION

Index	Parameter
177	PRESSURE_LIMIT
178	SET_FAIL_SAFE_POS
179	FINAL_VALUE_RANGE
180	TOLERANCE_BAND
181	DELAY_TIME
182	STATUS_SOLENOID_ VALVE
183	FINAL POSITION VALUE

State of the Transducer Block

Enables the lower x-limit.

Enables the upper x-limit.

User-defined characteristic

Indicates the zero point limit [%].

Parameter
FINAL_VALUE
DATALOGGER
DATALOGGER_READ
TEMP_MONITORING
STEP_RESPONSE_R
STEP_RESPONSE_RW
EVENT_LOGGING_1
EVENT_LOGGING_2

Index	Parameter
192	ENHANCED_DIAG_CMD
193	ELAPSED_HOURS_ METERS
194	AUTOSTART_HYST
195	DIAGNOSE_LEVEL
196	NO_OF_ZERO_ POINT_ADJ
197	ZERO_POINT_LIMIT
198	COUNTER_INIT_START

Index	Parameter
199	HISTOGRAMM_X_ ABTASTRATE
200	HISTOGRAMM_E_ ABTASTRATE
201	DIAG_TESTINFO
202	DEVICE_CHARACT
203	USER_CHARACT
204	STAT_KENNLINIE_RW

DI1/2 Function Block, Slot 2/3 · Profile-specific parameters

Parameter	Index	SK	Access	Mode	Selection/display [Default value]
ALARM_SUM	23		r		[0]
ALERT_KEY	20	S	r/w	ALL	[0]
BATCH	24	S	r/w	ALL	
BLOCK_OBJECT	16		r		
CHANNEL	30	S	r/w	ALL	DI1: 0 = Not active 780 = Active DI2: 0 = Not active 524 = Active
FSAFE_TYPE	36	S	r/w	ALL	0 = Status: UNCERTAIN – substitute value [1] = Status: UNCERTAIN – last useable value 2 = Status: BAD
FSAFE_VAL_D	37	S	r/w	ALL	[0]
INVERT	31	S	r/w	ALL	[0] = Not inverted 1 = Inverted
MODE_BLK	22		r		
OUT_D *	26	S	r/w	ALL	
SIMULATE	40	S	r/w	ALL	[disabled]
ST_REV	17		r		[0]
STRATEGY	19	S	r/w	ALL	[0]
TAG_DESC	18	S	r/w	ALL	[32 user-definable characters]
TARGET_MODE	21	S	r/w	ALL	8 = AUTO (automatic) 16 = MAN (manual) 128 = O/S (out of service)
VIEW1	240		r		

Parameter index

Index	Parameter
16	BLOCK_OBJECT
17	ST_REV
18	TAG_DESC

Index	Parameter
19	STRATEGY
20	ALERT_KEY
21	TARGET_MODE

Index	Parameter
22	MODE_BLK
23	ALARM_SUM
24	BATCH

Description

Indicates the current states of the process alarms in the DI Function Block.

Contains the ID number of the plant unit.

Contains the identification of the batch process.

Links the Function Block with its associated Transducer Block

Defines the reaction of the device when an error occurs

- . . . FSAFE VALUE is used instead of OUT D
- . . . Use of the last valid value of OUT D
- . . . OUT D does not have a valid value

Default value for OUT_D when the sensor or the sensor electronics error is detected.

Inverts the input value PV_D (sent by DI Transducer Block) before it is saved in the OUT_D parameter and sent.

Indicates the actual mode.

This parameter is the output of the Function Block. It can be defined by the user in MAN mode.

The input value (PV D) issued by the Transducer Block can be simulated for test purposes. This also results in DI Transducer Block and the DI Function Block being disconnected.

Indicates the revision level of static data.

This parameter is used to group blocks for their faster analysis.

Blocks are grouped by entering the same value in the STRATEGY parameter of each block.

Used to enter a user-selected text to identify and assign blocks.

Desired mode of operation

Collective command allowing a group of parameters to be read with one single read-service.

Index	Parameter
26	OUT_D
30	CHANNEL
31	INVERT

Index	Parameter
36	FSAFE_TYPE
37	FSAFE_VAL_D
40	SIMULATE

Index	Parameter
240	VIEW1

DI1 Transducer Block, Slot 2 · Profile-specific parameters DI2 Transducer Block, Slot 3 · Profile-specific parameters

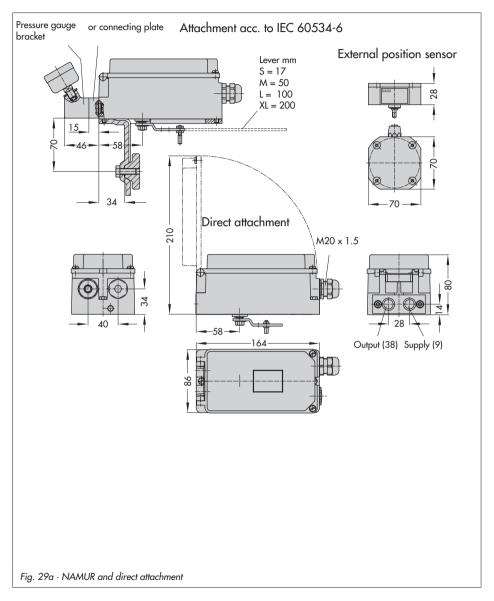
Parameter	Index	SK	Access	Mode	Selection/display [default value]
ALARM_SUM	67		r		[0]
ALERT_KEY	64	S	r/w	ALL	[0]
BLOCK_OBJECT	60		r		
MODE_BLK	66		r		
PV_D	72		r		
SENSOR_ID	69	S	r/w	ALL	
SENSOR_MAN	71	S	r/w	ALL	
SENSOR_SER_NUM	70	S	r/w	ALL	
SENSOR_WIRE_CHECK	68	S	r/w	ALL	Detection of 0 = Lead breakage and short circuit enabled 1 = Lead breakage enabled, short circuit disabled 2 = Lead breakage disabled, short circuit enabled 3 = Lead breakage and short circuit disabled
ST_REV	61		r		[0]
STRATEGY	63	S	r/w	ALL	[0]
TAG_DESC	62	S	r/w	ALL	[32 user-definable characters]
TARGET_MODE	65	S	r/w	ALL	8 = AUTO (automatic) 128 = O/S (out of service)
VIEW1	241		r		

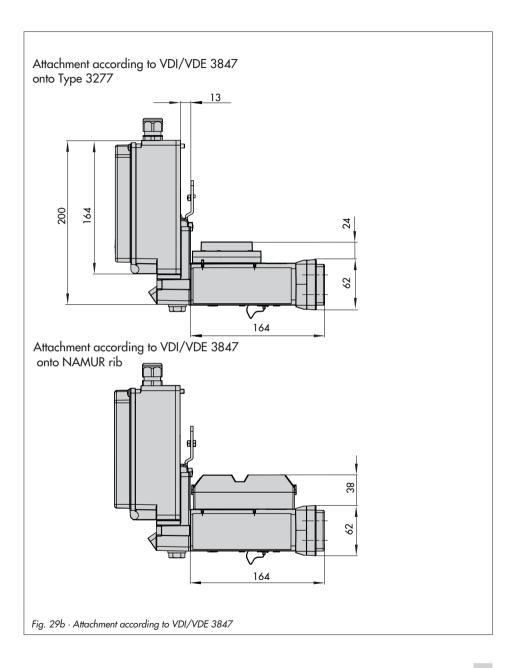
Parameter index

Index	Parameter
60	BLOCK_OBJECT
61	ST_REV
62	TAG_DESC

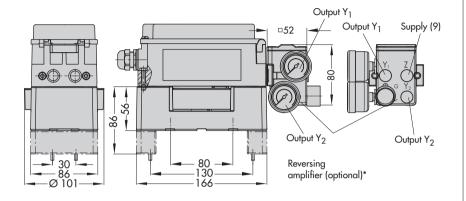
Index	Parameter
63	STRATEGY
64	ALERT_KEY
65	TARGET_MODE

Index	Parameter
66	MODE_BLK
67	ALARM_SUM
68	SENSOR_WIRE_CHECK

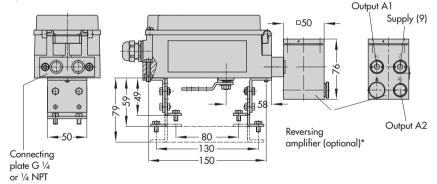

Description
This parameter contains the measured logical value and its status which are available to the Function Block.
Identification of the sensor (type)
Manufacturer of the sensor
Serial number of the sensor
Enables the lead breakage and short circuit detection.


Collective command allowing a group of parameters to be read with one single read-service.

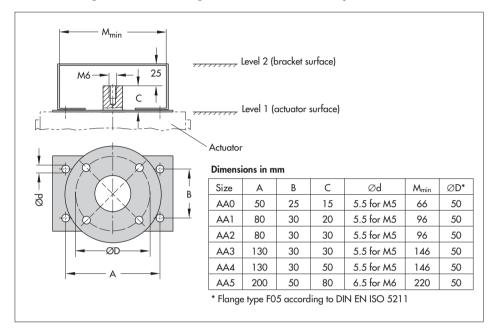
Parameter
SENSOR_ID
SENSOR_SER_NUM
SENSOR_MAN


Index	Parameter
72	PV_D
241	VIEW1

16 **Dimensions in mm**



Heavy-duty version


Light version

- * Reversing amplifier
- Type 3710 (see drawing of heavy-duty version for dimensions)
- 1079-1118/1079-1119, no longer available (see drawing of light version for dimensions)

Fig. 29c · Attachment to rotary actuators acc. to VDI/VDE 3845 (Sept. 2010), fixing level 1, size AA1 to AA4

Fixing levels according to VDI/VDE 3845 (September 2010) 16.1

VDE

VDE Prüf und Zertifizierungsinstitut

TRANSLATION

Offenbach, 2005-11-21 Our ref. 479000-9010-0001/67325

FG33/bhl-wah

Your letter 2005-11-08

Your ref. P. Opl

Tel. (069) 8306-249 Fax (069) 8306-716 gerhard.bichl@yde.com H. Biehl

Fest report for Information of the Applicant

Testing of the Degree of Protection on enclosures of Type 3730 and Type 3731 Positioners

This test report contains the result of a single investigation carried out on the product submitted. A sample of this product was tested to found the accordance with the thereafter listed standards resp. parts of standards.

The test report does not entitle to use a VDE Certification mark and the "GS = gepriffe Sicherheit (lest safety)" and does not refer to all VDE specifications applicable to the tested product.

This report may only be passed to a third party in its complete wording including this preamble and the date of

Any publication or reproduction requires the prior written approval of the VDE Testing and Certification

Assignment

The samples described in 2 below were tested for compliance with the IP 66 degree of protection.

Samples 2.1 Type 3730 Positioner

2.2 Type 3731 Positioner

VDE Prüf und Zertifizierungsinstitut

Basis of assessment 3

Degree of protection provided by enclosures (IP Code) DIN EN 60529/VDE 0470 Part 1/2000-09 German version EN 60529:1999+A1:2000

The dust text had already been carried out on the Type 3730 Positioner under the reference number: 479000-9010-000153752 and on the Type 3770 Positioner under the reference number: 479000-9010-000158958 with suction as per category 1 at the connecting enclosures of the positioners and solenoid valves. The under pressure was 2 kPa and the test lasted 8 hours.

The testing of the samples described in 2 above yielded the following results: Test results

0

against ingress of solid foreign objects according to DIN EN 60529/VDE 0470 Part 1:2000-09 Protecting against access to hazardous parts and

Protecting against ingress of water according to DIN EN 60529/VDE 0470 Part 1:2000-09

IPX6 satisfied

P6X satisfied

The positioner enclosures in the versions submitted meet the requirements of IP 66 degree of protection.

VDE- Prüf- und Zertifizierungsinstitut Fachgebiet FG33

There was no ingress of either dust or water.

(Signature)

(Signature)

Gerhard Biehl

Testing and Certification Institute Merianstrasse 28 D-63069 Offenbach Prothericht VDE n. EN 60529 IP-Schutzart.doc 1e-mail: vde-institut@vde.com ELEKTRONIK INFORMATIONSTECHNIK e.V VDE VERBAND DER ELEKTROTECHNIK

VDE VERBAND DER ELEKTROTECHNIK ELEKTRONIK INFORMATIONSTECHNIK e.V

Testing and Certification Institute Merianstrasse 28 D-63069 Offenbach Prüfbericht VDE n. EN 60529 IP-Schutzart.doc 2e-mail: vde-institut@vde.com

ECEx Certificate

of Conformity

INTERNATIONAL ELECTROTECHNICAL COMMISSION IEC Certification Scheme for Explosive Atmospheres for rules and details of the IECE scheme visit www.kecx.com

Certificate No.:

Issue No :: 0

Page 1 of 4

IECEx PTB 06.0054 2006-11-02 Current

Status:

Date of Issue: Applicant:

SAMSON AG Mess- und Regeltechnik Weismuellerstrasse 3 D-60314 Frenkfurt am Main

Electrical Apparatus: Bus-powered field tip-Positioners types 3730-41 and 3730-51 Optional accessory:

General Requirements, Intrinsic Safety Type of Protection:

Ex ia IIC T6 Marking:

Department Head of "Intrinsic Safety and Safety of Systems" Dr.-Ing. Ulrich Johannsmeyer

Approved for issue on behalf of the IECEx Certification Body:

Position:

Signature: (for printed version)

Date:

This cartificate and schedule may only be reproduced in full.
 This cartificate is not harstended ent membra he properly on the issuing body.
 This cartificate is not harstended ent membra he properly only usefling the Official IECEx Website.
 The Status and authenticity of this certificatie may be writted by visiting the Official IECEx Website.

Physikalisch-Technische

Certificate issued by:

Bundesanstalt (PTB) Bundesallee 100 38116 Braunschweig Germany

IEC.

IECEx Certificate of Conformity

IECEx PTB 06.0054

Certificate No.: Date of Issue:

2006-11-02

Issue No.: 0 Page 2 of 4

SAMSON AG Mess- und Regettechnik Weismuellerstrasse 3 D-60314 Frankfurt am Main Germany

Manufacturer:

Manufacturing location(s):

The certificate is issued as verification that is sample(s), representable of production, was assessed and tested and found to comply the the CES of the complete of production, was assessed and the complete of the production of the complete of the comple

STANDARDS: The electrical apparations and any acceptable variations to it specified in the schedule of this certificate and the identified Concurrents, was found to comply with the following standards:

Electrical apparatus for explosive gas atmospheres - Part 0: General requirements Electrical apparatus for explosive gas atmospheres - Part 11: Intrinsic safety T IEC 50079-11: 1999 Edition: 4 IEC 60079-0: 2004 Edition: 4.0

This Certificate does not indicate compliance with electrical safety and parformance requirements other than those expressly included in the Standards listed above.

TEST & ASSESSMENT REPORTS: A sample(s) of the equipment listed has successfully mat the examination and lest requirements as recorded in

Quality Assessment Report DE/PT8/ExTR06.0086/00

est Report:

DE/TUN/QAR06.0011/00

IECEx Certificate

of Conformity

Issue No.: 0 Page 3 of 4

ECEx PTB 06.0054 2006-11-02

Certificate No.: Date of Issue: Schedule

EQUIPMENT: Equipment and systems covered by this certificate are as follows:

The Model 3730-41 and 3730-51 i/p-Positioners are bus-powered field devices

with communication capability and serve for adjusting the valve stem positions

in compliance with a control signal. They are intended for attachment to either

linear or rotary actuators.

Communication with field devices programmable logic control systems and

distributed control systems is optionally either according to Profibus PA

(Model 3730-41 . .), or in accordance with the FOUNDATION $^{\mbox{\scriptsize TM}}$ Fieldbus

Specification (Typ 3730-51 . .).

For further information see annexe.

CONDITIONS OF CERTIFICATION: NO

Annexe: 3739-41_51 Technical Data pdf

IECEx Certificate of Conformity

ECEx PTB 06.0054

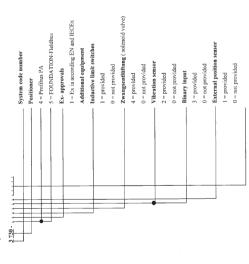
Certificate No.: Date of Issue:

Issue No: 0 Page 4 of 4

2006-11-02

for further information see annex Additional information:

Annex to Certificate of Conformity IECEx PTB 06.0054


Equipment:	Model 3730-41 Profibus PA Positioner Model 3730-51 FOUNDATION FF Positioner	ь
Submitted by:	SAMSON AG Mess- und Regeltechnik Weismüllerstrasse 3, 60314 Frankfurt	
Manufactured by:	SAMSON AG Mess- und Regeltechnik Weismüllerstrasse 3, 60314 Frankfurt	
Groups:	IIC/IIB	
Type of Protection:	ia	
Temperature Classification:	D₀09/9L	Ì
Degree of Ingress Protection:	IP 54 IP 65 und IP 66	

Conditions of Manufacture

Routine testing and high-voltage testing between the individual circuit and the enclosure with 500V, 50IIz, Imin.

Schedule

The positioners come in several versions. The following model designation code applies:

Annex to Certificate of Conformity IECEx PTB 06.0054

1+2 = M 20x1,5 (plastic) 5+6 = M 20x1,5 (metal) Pneumatic connections Electric connections Connections

The dots in the model designation code will be substituted for numerals identifying the equipment version

Scope

Ex is IIC/IIB T6 ; -40°C \le ts \le T6 60°C / -40°C \le ts \le T5 70°C / -40°C \le ts \le T4 80°C ; IP 54 or IP 65

"Testing and assessment according IEC 60079-0 and 60079-11" type of protection Ex ia IIC T6 degree of protection IP 54 and IP 65 according to IEC 60529

Table: Summary of results

	FC	FOUNDATION Fieldbus	ON Fieldb	an.		FIS	FISCO	
Group	=	пс	п	IIB	пс	د	п	IIB
[A]A	2	24	2,	24	20	0	2	24
I[mA]	174(1)	360(2)	433(1)	380(2)	309(1)	360(2)	433(1)	380(2)
P [W]	2,08(1)	1,04(2)	5,16(1)	2,58(2)	1,04(2) 5,16(1) 2,58(2) 3,09(1) 1,54(2)	1,54(2)	5,16(1) 2,58(2)	2,58(2)

I(1) = maximum current for intrinsically safe resistive circuits according to EN 50020

I(2) = maximum current according to Profibus User Organization

P(1) = maximum power in the intrinsically safe circuit upon matching

P(z) = maximum power in consumer upon matching

Model 3730-41 and 3730-51 t/p Positioners – Permissible maximum values for intrinsic safety according to EG Type Examination Certificate PTB 04 ATEX 2109

communication capability and serve for adjusting the valve stem positions incompliance with a control signal. They are intended for attachment to either linear or rotary actuators. The Model 3730-41 and 3730-51 i/p Positioners are bus-powered field devices with

Communication is optionally either according to Profibus PA in compliance with the FISCO concept (Typ 3730-41) or in accordance with the FOUNDATIONTM Fieldbus Specification

The Model Typ 3739-41 and 3730-51 are passive two-terminal networks which may be connected to all cerfficiel intrinsically safe circuits, provided the permissible maximum valouses of Uj, Il und Pl are not exceeded.

1 of 5

Annex to Certificate of Conformity IECEx PTB 06.0054

For instrument air noncombustible media are used.

The equipment is intended for use in hazardous locations.

The correlation between temperature classification and the permissible ambient temperature

	Permissible ambient temperature ranges	-40 °C 60 °C	-40 °C 70 °C	-40 °C 80 °C
ranges is shown in the table below:	Temperature class	T6	TS	T4

Electrical data

BUS connection signal circuit (terminals 11/12)

Type of protection: Intrinsic safety Ex ia IIC/IIB only for connection to an intrinsically safe circuit

The correlation between the type of protection and the electrical data is shown in the tables

Maximum values: Model 3730-4..

Fromous PA	Ex ia IIC/IIB	Ui = 17,5 V DC	Ii = 380 mA	Pi = 5.32 W	Model 3730-5
Froi	Exic	Ui=1	111	Pi =	Maximum values: Model 3730-5

Ui = 24 DC Ii = 380 mA Pi = 2.58 W Ex ia IIB FOUNDATIONTM Ui = 24 v DC Ii = 360 mAPi = 5.32 WEx ia IIC

Ci = 5 nF; $Li = 10 \mu\text{H}$

Type of protection: Intrinsic safety EEx ia IIC, only for connection to an intrinsically safe circuit Limit switch, inductive (terminals 41/42)

Maximum values:

Ui = 16 V; Ii = 52 mA; Pi = 169 mW

Li = 100 µH; Ci = 30 nF

Ui = 16 V; Ii = 25 mA: Pi = 64 mA

3 of 5

Annex to Certificate of Conformity IECEx PTB 06.0054

Li = 100 µH; Ci = 30 nF

The correlation between temperature classification and the permissible ambient temperature ranges, maximum short-circuit currents and maximum power of the analyzers is shown in the abelow:

Type of protection: Intrinsic safety Ex ia IIC only for connection to an intrinsically safe circuit Maximum values:

Forced venting function

(terminals 81/82)

Ui = 28 V, Ii = 115 mA Pi = 500 mW

Li = negligible Ci = 5.3 nF

Type of protection: Intrinsic safety Ex ia IIC/IIB only for connection to an intrinsically safe circuit Binary input 1 (terminals 87/88)

Maximum values:

Ui = 30 V, Ii = 100 mA

Li and Ci = negligible

Type of protection: Intrinsic safety Ex ia IIC/IIB only for connection to an intrinsically safe circuit

Binary input 2 (terminals 87/88)

Maximum values:

 $U_0 = 5.88 \text{ V}, I_0 = 1 \text{ mA}$ $P_0 = 7.2 \text{ mW}$

The correlation between the type of protection and the permissible external capacitances and inductances is shown in the table below:

	Ex ia IIB	$C_0 = 4 \mu F$	T.0=1 H
	Ex ia IIC	$C_0 = 2 \mu F$	In = 10 mH
Ė			

Li and Ci negligible

Type of protection: Intrinsic safety Ex ia IIC

Serial interface BU

Maximum values:

Annex to Certificate of Conformity IECEx PTB 06.0054

$$U_0 = 8,61 \text{ V}, I_0 = 55 \text{ mA}$$

 $P_0 = 250 \text{ mW}$

The correlation between the tyl

ternai capacitances and	Ex ia ITB	C0 = 4 µF	Le = 9 mH
ype of protection and the permissible external capacitances and able below	Ex ia IIC	Co = 0,61 µF	L ₀ = 9 mH
ype of protec able below			

Only for connection to a certified intrinsically safe circuit

Maximum values:
$$U_{i}=16~V, I_{i}=25~mA$$

$$P_{i}=64~mW$$
 Li and Ci negligible

In ease of interconnection the rules for interconnecting intrinsically safe circuits shall be compiled with.

Type of protection: Intrinsic safety Ex ia IIC External position sensor (analog pcb, pins p9, p10, p11)

Maximum values:

$$U_0 = 8.61 \text{ V}$$
, $I_0 = 55 \text{ mA}$
 $P_0 = 250 \text{ mW}$

The correlation between the type of protection and the permissible external capacitances and inductances is shown in the table below:

Ex ia IIB	C0 = 4 µF	$L_0 = 9 \text{ mH}$
Ex ia IIC	Co = 0,61 µF	Lo = 9 mH

 $Li = 370 \ \mu H, \ Ci = 730 \ nF$

EU-TYPE-EXAMINATION CERTIFICATE

(Translation)

Ξ (2)

Equipment or Protective Systems Intended for Use in

Potentially Explosive Atmospheres - Directive 2014/34/EU

PTB 04 ATEX 2109 EU-Type Examination Certificate Number 3

Postitioner, type 3730-41..., 3730-51..., 3730-45..., 3730-55.

Product:

4 (2) (9)

ssue: 1

Weismüllerstraße 3, 60314 Frankfurt, Germany SAMSON AG Mess- und Regeltechnik Manufacturer: Address:

This product and any acceptable variation thereto is specified in the schedule to this certificate and the documents therein referred to. 6

The Physikalisch-Technische Bundesanstalt, notified body No. 01'02 in accordance with Article 17 of the Directive 2014/34/EU of the European Parlamenta and of the Council dated 28 February 2014, certifies that his product has been found to comply with the Essential Healih and Safely Requirements relating to the design and construction of products intended for use in potentially explosive atmospheres, given in Annex I to the Directive. 8

The examination and test results are recorded in the confidential Test Report PTB Ex 17-25139.

Compliance with the Essential Health and Safety Requirements has been assured by compliance with: EN 60079-0:2012/A11:2013 EN 60079-11:2012 EN 60079-31:2014 6

If the sign "X" is placed after the certificate number, it indicates that the product is subject to the Specific Conditions of Use specified in the schedule to this certificate.

(10)

This EU-Type Examination Certificate relates only to the design and construction of the specified product in accordance to the Directive 2014/34/EU. Further requirements of the Directive apply to the manufacturing process and supply of this product. These are not covered by this certificate. (11)

The marking of the product shall include the following: (12)

Exia IIC T6...T4 Gb and II 2 D Exia IIIC T80 °C Db Ex tb IIIC T80 °C Db II 2 G II 2 D

Konformitätsbewertungsstelle, Sektor Explosionsschutz

SSEXOO1e c

Braunschweig, May 11, 2017

ō

On behalf of PTB: Dr. Ing. F. Lie Regierungsdi EU-Type Examination Certificates without signature and official staring shall not be walid. The certificates may be circulated only without alteration. Extract on otherations are subject to approved by the Physikalisch-Technische Bundesanstalt. In case of dispute, the German text shall prevail.

sheet 1/7

allee 100 • 38116 Braunschweig • GERMANY Physikalisch-Techn

SCHEDULE

(13)

(14) EU-Type Examination Certificate Number PTB 04 ATEX 2109, Issue: 1

Description of Product (12)

The bus interface connection (bus-coupling) can be performed according to the FISCO-concept for both specifications, Profibus PA and FoundationTM Fieldbus. The positioners of types 3730-41..., 3730-51..., 3730-45... and 3730-55... are communicationcapable, bus-powered field devices which are used to assign a valve position to a control signal.

They are mounted onto levitation and slewing actuators. Non-flammable media are used as pneumatic auxiliary power. The equipment is intended for the application inside the hazardous

Thermal and electrical maximum values

Type 3730-41 and 3730-51:

For relationship between temperature class and permissible ranges of the ambient temperature, reference is made to the following table:

Permissible ambient temperature range	-55 °C 60 °C	-55 °C 70 °C	-55 °C 80 °C	-55 °C 80 °C
Temperature clas	T6	T5	T4	not applicable
Gas- or dust group Temperature class		≌		IIIC

For relationship between temperature class, permissible ranges of the ambient temperature, maximum short-circuit currents and maximum power for analyzing units with limit contacts (terminals 41/42), reference is made to the following table: sheet 2/7

EU-Type Examination Certificates without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approved by the Physikalsaton-Technische Bundesanstial. In case of dispute, the Greman text shall prevail.

instalt • Bundesallee 100 • 38116 Braunschweig • GERMANY Physikalisch-Technische Bur

SCHEDULE TO EU-TYPE EXAMINATION CERTIFICATE PTB 04 ATEX 2109, Issue: 1

l ₀ /P _o		52 mA / 169 mW			25 mA / 64 mW	
Permissible ambient temperature range	-55 °C 45 °C	-55 °C 60 °C	-55 °C 75 °C	-55 °C 60 °C	-55 °C 80 °C	-55 °C 80 °C
Temperature class	T6	T5	T4	T6	T5	T4

type of protection Intrinsic Safety Ex ia IIC / IIB / IIIC only for connection to a certified intrinsically safe circuit BUS-connection-signal circuit . (terminals 11/12)

For relationship between type of protection and electrical data, reference is made to the following table:

Maximum values:

FISCO power supply	FIELDBUS power supply general	ower supply aral
Ex ia IIC / IIB / IIIC	Ex ia IIC / IIIC	Ex ia IIB / IIIC
U _i = 17,5 V DC	U _i = 24 V DC	U _i = 24 V DC
I _i = 380 mA	I _i = 360 mA	I _i = 380 mA
P _i = 5,32 W	$P_i = 1,04 \text{ W}$	P _i = 2,58 W

L₁ = 10 µH $C_i = 5 \text{ nF}$

type of protection Intrinsic Safety Ex ia IIC / IIIC only for connection to a certified intrinsically safe circuit Limit contact, inductive (terminals 41/42)

mA M > U_i = 16 I_i = 52 P_i = 169

Maximum values:

는 표 C_i = 60 L_i = 100 resp. sheet 3/7

EU-Type Examination Certificates without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or attentions are ablighed to sprick out by the Physikalsch-Technische Bundesanstail. In case of dispute, the German text shall prevail prevail. Physikalisch-Technische Bundesanstalt • Bundesallee 100 • 38116 Braunschweig • GERMANY

Braunschweig und Berlin Nationales Metrologieinstitut

SCHEDULE TO EU-TYPE EXAMINATION CERTIFICATE PTB 04 ATEX 2109, Issue: 1 Physikalisch-Technische Bundesanstalt

type of protection Intrinsic Safety Ex ia IIC / IIIC	only for connection to a certified intrinsically safe circuit
Forced deaeration	(terminals 81/82)

> WH ΈΞ

U_i = 16 I_i = 25 P_i = 64 C_i = 60 L_i = 100

values	>	mA
MAXIMUM	28	115
ξ	11	П
Me	Ō	-

type of protection Intrinsic Safety Ex ia IIC / IIIC C_i = 5.3 nF L_i negligibly low

for connection to an active contact circuit Maximum values: 0 = 30Binary input 1..... (terminals 87/88)

C_i negligibly low L_i negligibly low mA 1 = 100

only for connection to a passive floating contact circuit type of protection Intrinsic Safety Ex ia IIC / IIB / IIIC (terminals 85/86) Binary input 2..

Maximum values:

U_o= 5.88 V I_o = 1 mA P_o= 7.2 mW

group and inductances, permissible external capacitances and reference is made to the following table: For relationship between explosion

Ex ia IIB / IIIC	C _o = 16 µF	Lo = 1 H
Ex ia IIC / IIIC	C _o = 2 µF	L _o = 10 mH

sheet 4/7

EL-Type Examination Certificates without signature and official starp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approved by the Physiciasion-Fuchinache Bundesanstall. In case of dispute, the German rex shall prevail. Physikalisch-Technische Bundesanstalt • Bundesallee 100 • 38116 Braunschweig • GERMANY

type of protection Intrinsic Safety Ex ia IIC / IIB / IIIC SCHEDULE TO EU-TYPE EXAMINATION CERTIFICATE PTB 04 ATEX 2109, Issue: 1 C_i negligibly low L_i negligibly low (programming socket BU)

For relationship between type of protection and permissible external capacitances and inductances, reference is made to the following table:

Maximum values:

Serial Interface

шĄ

l_o = 55 P_o = 250

8.61 V

Ex ia IIB / IIIC	C _o = 4 µF	L _o = 9 mH
Ex ia IIC / IIIC	C _o = 0.61 µF	L _o = 9 mH

only for connection to a certified intrinsically safe circuit Maximum values:

C_i negligibly low L_i negligibly low

U_i = 16 I_i = 25 P_i = 64

type of protection Intrinsic Safety Ex ia IIC / IIIC

Maximum values: mA 8.61 V = °∩

For relationship between type of protection and permissible external capacitances and inductances, reference is made to the following table: sheet 5/7

EU-Type Examination Certificates without signature and official strain shall not be valid. The certificates may be circulated only without alteration. Extrade or alterations as subject to approved by the Physikalisch-Technische Bundesanstalt, in case of dispute, the German root shall prevail.

install • Bundesallee 100 • 38116 Braunschweig • GERMANY Physikalisch-Technische Bund

SCHEDULE TO EU-TYPE EXAMINATION CERTIFICATE PTB 04 ATEX 2109, Issue: 1

Ex ia IIC / IIIC	Ex ia IIB / IIIC
Co = 0.61 µF	C _o = 4 µF
-0= 9 mH	L _o = 9 mH

ヒ핔 C_i = 730 L_i = 370

Type 3730-45... und 3730-55...

The permissible range of the ambient temperature for dust groupe IIIC is -55 °C ... 80 °C.

BUS-connection signal circuitNominal signal: (Terminals 11/12)	24 V DC
	6 30 V DC 30 V
Binary input 2only for connection to a passive floating (Terminals 85/88)contact circuit	passive floating
Limit contact, inductive	8 V DC, 8 mA 16 V
Forced deaerationRominal signal: (Terminals 81/82)	6 24 V DC 28 V

Changes against previous issue:

The changes concern the update of the applied standards, the electrical data, the adding of another type notation for dust ignition protection by enclosure, the implementation of dust ignition protection by Intrinsic Safety, tie application of alternative gasket material of the enclosure and alternative construction of the enclosure.

(16) Test Report PTB Ex17-25139

(17) Specific conditions of use none EU-Type Examination Certificates without signature and official stamp shall not be valid. The certificates may be circulated only without attention. Extracts or attentions are subject to payroad by the Pakaisiach-Technische Bundesanstalt, in case of depute, the German text shall provail.

sheet 6/7

anstall • Bundesallee 100 • 38116 Braunschweig • GERMANY

SCHEDULE TO EU-TYPE EXAMINATION CERTIFICATE PTB 04 ATEX 2109, Issue: 1

(18) Essential health and safety requirements

Met by compliance with the aforementioned standards.

According to Article 41 of Directive 2014/34/EU, EC-type examination certificates which have been issued according to Directive 94/9EC prior to the date of coming into force of Directive 2014/34/EU (April 20, 2016) may be considered as if they were issued already in compliance with Directive 2014/34/EU By permission of the European Commission supplements to such EC-type examination certificates and new issues of such certificates may continue to hold the original certificate uniber issued before April 20, 2016.

Konformitätsbewertungsstelle, Sektor Explosionsschutz On behalf of PTB: Jesch Market Mar

Dr.-Ing. F. Lienesch Regierungsdirektor

Braunschweig, May 11, 2017

sheet 7/7

instalt • Bundesallee 100 • 38116 Braunschweig • GERMANY

Physikalisch-Technische Bund

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Nationales Metrologieinstitut

CONFORMITY STATEMENT (Translation)

Ξ

Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres - Directive 2014/34/EU (5)

Test Certificate Number

PTB 05 ATEX 2010 X

Issue: 1

Positioner type 3730-48... and 3730-58.

Weismüllerstraße 3, 60314 Frankfurt, Germany SAMSON AG Mess- und Regeltechnik

Manufacturer: Address: Product:

> (2) (9)

4 3

This product and any acceptable variation thereto are specified in the schedule to this certificate and the documents therein referred to. 2

The Physikalisch-Technische Bundesanstalt, notified body No. 0102 in accordance with Article 17 of the Directive 2014/34/10 for the European Parlament and of the Council, dated 55 February 2014, certifies that filts, producil has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of products intended for use in potentially explosive amospheres, given in Arines. 8

The examination and test results are recorded in the confidential test report PTB Ex 17-25140.

Compliance with the Essential Health and Safety Requirements has been assured by compliance with: EN 60079-0:2012/A11:2013 EN 60079-15:2010 EN 60079-31:2014 6

If the sign "X" is placed after the certificate number, it indicates that the product is subject to special conditions for safe use specified in the schedule to this certificate (10)

This Conformity Statement relates only to the design and construction of the specified product in accordance with Directive 2014/34/EU. Further requirements of this Directive apply to the manufacture and supply of this product. (11)

The marking of the product shall include the following: (12)

II 3 G Ex nA IIC T6 Gc bzw. II 3 D Ex tc IIIC T80 °C Dc (<u>X</u>)

Braunschweig, June 22, 2017

Sektor Explosionsschutz Konformitätsbewertungsalalle Se DSTIVATE Dr.-Ing. F. Liena Regierungsdirek

Conformity Statements without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or adheretions are subject to approve by the Postisializer-Trechnische Bundessanstalt without alteration. Extracts or adheretions are subject to approve by the Postisializer-Trechnische Bundessanstalt only without alteration. Extracts or disease, the German text shall provail.

Sheet 1/3

Physikalisch-Technische Bundesanstalt • Bundesallee 100 • 38116 Braunschweig • GERMANY

SCHEDULE

CONFORMITY STATEMENT PTB 05 ATEX 2010 X, Ausgabe: 1

(14)

(13)

Description of the product (12)

The positioners of types 3730-48... and 3730-58... are communication-capable, bus-powered field devices which are used to assign a valve position to a control signal.

They are mounted onto levitation and slewing actuators. Non-flammable media are used as pneumatic auxiliary power. The equipment is intended for the application inside the hazardous area.

Thermal and electrical maximum values:

For the relationship between temperature class and permissible ranges of the ambient The permissible ambient temperature range for dust group IIIC is between -55 °C ... 80 °C. temperature for gas group IIC reference is made to the following table:

permissible ambient temperature range	-55 °C 60 °C	-55 °C 70 °C	℃ 08 ··· 09 °C	
Temperature class	T6	T5	T4	

BUS-connection signal circuit (Terminals 11/12)	Nominal signal: Rated voltage:	24 V DC 28 V
Binary input 1	.Nominal signal: Rated voltage:	630 V D
Binary input 2	only for connection to a passive floatin contact circuit	assive floatin
Limit contact, inductive	Nominal signal: Rated voltage:	8 V DC, 8 m 16 V
Forced deaeration	Nominal signal: Rated voltage:	6 24 V DO 28 V

O g ¥ O Conformity Statements without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alteration are as bathoot to proved by the hygicalisest-Technische Bundesanstail only without alteration. Extracts or alterations are subject to German fact shall prevail.

Physikalisch-Technische Bundesanstalt • Bundesallee 100 • 38116 Braunschweig • GERMANY

SCHEDULE TO EU-TYPE EXAMINATION CERTIFICATE PTB 05 ATEX 2010 X, Issue: 1

Changes against previous issue:

The changes concern the update of the applied standards, the electrical data, the cancelation of type of protection. It, the addition of clust ignition protection by enclosure, the application of yields the protection of the enclosure and alternative goster material of the enclosure.

(16) <u>Test report</u> PTB Ex 17-25139

(17) Specific conditions of use

The program-interface intended for connection to the positioners of types 3730-48... and 3730-58... shall be installed outside of the hazardous area.

For type of protection "nA" applies:

If the program-interface adaptor is connected to a circuit of type of protection "nA" a fuse according to IEC 60127-2/NI, 250 V F or according to IEC 60127-2/NI, 250 V T with a nominal tuse current of max, in A of m As halls be connected in series to the Voc-circuit. The fuse shall be arranged outside of the hazardous area.

Essential health and safety requirements

(18)

Met by compliance with the aforementioned harmonized standards.

According to Article 41 of Directive 2014/34/EU, Conformity Statements which have been issued according to Directive 84/9EC prior to the date of coming into force of Directive 2014/34/EU, 140, 20, 2016) may be considered as if they were issued already in compliance with Directive 2014/34/EU. By permission of the European Commission supplements to such conformity Statements and new issues of such certificates may continue to hold the original certificate rumber sixued before April 20, 2016.

Konformitalsbewyarticantine, Sektor Explosionsschutz On behalf of Programmer (Programmer (

Braunschweig, June 22, 2017

Sheet 3/3

Conformly Statements without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to patrowal by the Privatisation-Technische Bundesanstait. In case of depute, the German feet dail prevail.

Addendum Page 1

Installation Manual for apparatus certified by CSA for use in hazardous locations. Communication is optionally either according to the FOUNDATION TM Fieldbus Specification or according to PROFIBUS PA in compliance FISCO-Concept

The FISCO Concept allows interconnection of intrinsically safe apparatus to associated apparatus not specifically examined in such combination. The criteria for interconnection is that the voltage (Vmax) the current (Imax) and the power (Pmax) which intrinsically safe apparatus can receive and remain intrinsically safe, considering faults, must be equal or greater than the voltage (Voc) the current (Isc) and the power (Po) levels which can be delivered by the associated apparatus, considering faults and applicable factors. In addition, the maximum unprotected capacitance (Ci) and inductance (Li) of each apparatus (other than the termination) connected to the fieldbus must be less than or equal to 5 nF and 10 µH respectively.

In each segment only one active device, normally the associated apparatus, is allowed to provide the necessary energy for the fieldbus system The allowed voltage (Voc) of the associated apparatus is limited to the range of

14V DC. to 24V DC. All other equipment connected to the bus cable has to be passive, meaning that they are not allowed to provide energy to the system, except to a leakage current of 50mA for each connected device. Separately powered equipment needs a galvanic isolation to assure that the intrinsically safe fieldbus circuit remains passive.

The cable used to interconnect the devices need to have the parameters in the following range

Loop resistance R': 15 150 Ohm/km Inductance per unit length L': 0.4 ... 1 mH/km

Capacitance per unit length C': 80 200 nE/km

C' = C' line/line + 0.5 C' line/screen, if both lines are floating or, C' = C' line/line + C'line/screen, if the screen is connected to one line

Length of spur cable: < 30 m Length of trunk cable: ≤ 1 km

At each end of the trunk cable an approved infallible line termination with the following parameters is suitable

R = 90 ... 100 Ohm C-0 22 uE

One of the allowed terminations might already be integrated in the associated apparatus.

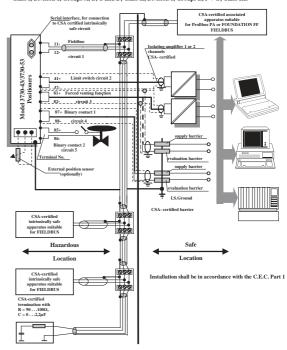
The number of passive devices connected to the bus segment is not limited due to L.S. reasons. If the above rules are respected, the inductance and capacitance of the cable will not impair the intrinsic safety of the installation.

- Approved associated apparatus must be installed in accordance with manufacturer instructions
- 2 Approved associated apparatus must meet the following requirements:

Voc ≤ Vmax, Isc ≤ Imax, Po ≤ Pmax

- The maximum non-hazardous area voltage must not exceed 250 V.
- The installation must be in accordance with the Canadian Electrical code Part 1.
- Each set of wires must be provided with grounded shield. The shield must extend as close to the terminal(s) as possible and it must be grounded shield at I. S. Barrier ground.
- Caution: Use only supply wires suitable for 5 °C above surrounding.
- Warning: Substitution of components may impair intrinsic safety. PE = I. S. Ground
- The polarity for connecting 11 and 12 is of no importance due to an internal rectifier.
- FISCO concept applies to fieldbus / circuit only.
- 10. Entity parameters apply to circuit 2, 3 and 4 and further required to meet the following conditions:

 $Co \ge C_i + Ccable$; $Lo \ge Li + Lcable$


Addendum Page 2

Intrinsically safe if installed as specified in manufacturer's installation manual.

CSA- certified for hazardous locations

Ex ia IIC T6

Class I, Division 1, Groups A, B, C and D; Class II, Division 1, Groups E, F + G; Class III.

201

5.3

0 ### ###

> 2μF 0,61µF

10mH

0

9mH ###

###

Binary- input 1: For connection of an active signal circuit

2

Binary- input 2: For connection of an passive contact circuit directly on the control valve, e.g. passive pressure switch for leakage monitoring

Notes:

Ci [nF]

Co or Ca

Li [uH]

Lo or La

1. Entity parameters must meet the following requirements:

 $V_{0C}\!\leq V_{max}$, $I_{SC}\!\leq I_{max},\,P_0\,\leq P_{max}$ Co or Ca ≥ Ci + Ccable and Lo or La ≥ Li + Lcable

2. Install in accordance with the Canadian Electrical Code Part I

3. Cable entry M 20 x1,5 or metal conduit acc. to dwg. No. 1050-0540

* Circuit 3 can be connected to a CSA Certified zener barrier that is rated as follows:

- Supply channel (connect to Terminal 81): Voc ≤ 28V max. and Rmin ≥ 245 Ω

Return channel (connect to Terminal 82): ≤28V max with diodes Return (zero current)

** Circuit 4 can be connected to a CSA Certified zener barrier that is rated as follows:

- Supply channel (connect to Terminal 87): Voc ≤ 30V and Rmin ≥ 300 Ω

Return channel (connect to Terminal 88): Voc ≤ 30V max with diodes Return (zero current)

Addendum Page 4

Table 2: CSA - certified barrier parameters of circuit 4

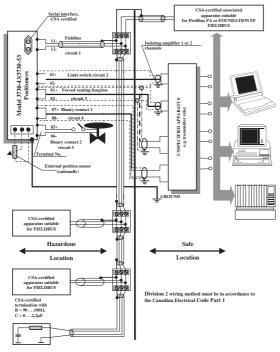
Barrier	Supply	barrier	Evaluation barrier		
Darrier	Voc	Rmin	V ₀ C	Rmin	
circuit 3	≤28V	≥245Ω	≤28V	Diode	
circuit 4	≤30V	≥300Ω	≤30V	Diode	

The correlation between temperature classification and permissible ambient temperature ranges is shown in the table 3 below:

Table 3:

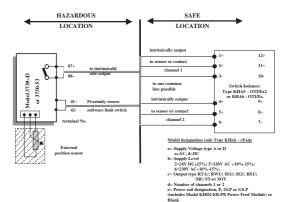
Temperature class	Permissble ambient temperature range		
Т6	+60°C		
T5	$-40^{\circ}\mathrm{C} \leq \mathrm{T_a} \leq +70^{\circ}\mathrm{C}$		
T4	+80°C		

Table 4: Energy-Limited (Non-Incendive) Parameters


		Foundation Fieldbus or Profibus PA (Non incendive Equipment)								Forced venting function	Binary- Input 1	put 2 see
Terminal		11 / 12 (IEC 1148-2)								81 / 82	87 / 88	ary in
Groups	A, B and IIC C, D and IIB						#/#	#/#	#/#	nd bin		
Ui or Vmax [VDC]	20V	24V	30V	32V	20V 24V 30V 32V			20V	28V 30V 32V	28V 30V 32V	-interface a table 1	
Ii or Imax [mA]	464	261	152	130	1,117 A	650	379	324	25mA 52mA	115mA 100mA 90mA	115mA 100mA 90mA	Maximum values for serial-interface and binary input 2 see table 1
Pi or Pmax [W]	2,32 1,56 1,14 1,14 5,88 3,89 3,85 2,77				64mW 169mW	##	##	n values f				
Ci	2nF						30	5,3	0	ximur		
Li		10µН								0	0	Ma

Adden

CSA certified for hazardous locations:


Ex nA II T6 / Ex nL IIC T6 Class I, Div. 2; Groups A, B, C, D; Class II, Div. 2 Groups E, F + G; Class III

Type 4 Enclosure

Addendum Page 5 Addendum Page 5

Installation drawing Control Relay KHA5-OTI/Ex2, KHA6-OTI/Ex1 or KHA6-OTI/Ex2 with Model SJ-b-N Proximity Sensors

The total series inductance and shunt capacitance of shield wiring shall be restricted to the following maximum values

maximum capacitance of each inductive sensor 30nF maximum inductance of each inductive sensor 100µH

System parameters

Control Relay Terminal No.	Groups	L [mH]	C [μF]	V ₀ C [V]	Isc [mA]	V _{max} [V]	Rmin [Ω]
1-3; 2-3 4-6; 5-6	A + B	192	2,66	1	†	↑	†
4-0, 5-0	C + E	671	7,9	10,5	13	10,5	811
	D, F, G	1000	21,3	₩	₩	♦	♦

Division 2 wiring method shall be in accordance to the Canadian Electrical Code Part 1. Communication is optionally either according to the FOUNDATION Fieldbus Specification or according to PROFIBUS PA in compliance FISCO-Concept

The FISCO Concept allows interconnection of intrinsically safe apparatus to associated apparatus not specifically examined in such combination. The criteria for interconnection is that the voltage (Vmax/Ui) the current (Imax/Ii) and the power (Pi) which intrinsically safe apparatus can receive and remain intrinsically safe, considering faults, must be equal or greater than the voltage (V0c/U0) the current (ISC/I0) and the power (P0) levels which can be delivered by the associated apparatus, considering faults and applicable factors. In addition, the maximum unprotected capacitance (Ci) and inductance (Li) of each apparatus (other than the termination) connected to the fieldbus must be less than or equal to 5 nF and 10 µH respectively.

In each segment only one active device, normally the associated apparatus, is allowed to provide the necessary energy for the fieldbus system The allowed voltage (Voc /Uo) of the associated apparatus is limited to the range of 14V DC. to 24V DC. All other equipment connected to the bus cable has to be passive, meaning that they are not allowed to provide energy to the system, except to a leakage current of 50mA for each connected device. Separately powered equipment needs a galvanic isolation to assure that the intrinsically safe fieldbus circuit remains passive.

The cable used to interconnect the devices need to have the parameters in the following range

Loop resistance R': 15 150 Ohm/km Inductance per unit length L': 0,4 ... 1 mH/km Capacitance per unit length C': 80 ... 200 nF/km

 $C^{*} = C^{*} \; line/line + 0.5 \; C^{*} \; line/screen, if both \; lines \; are \; floating \; or, \; C^{*} = C^{*} \; line/line + C^{*} line/screen, if the \; screen \; is \; line/line + C^{*} line/screen, if the \; screen \; line/line + C^{*} line/screen, if the \; screen \; line/line + C^{*} line/screen, if the \; screen \; line/line + C^{*} line/screen, if the \; screen \; line/line + C^{*} line/screen, if the \; screen \; line/screen, line/scr$ connected to one line

Length of spur cable: < 30 m Length of trunk cable: < 1 km

At each end of the trunk cable an approved infallible line termination with the following parameters is suitable:

R = 90 ... 100 Ohm C = 0 ... 2,2 µF the inductance and capacitance of the cable will not impair the intrinsic safety of the installation.

One of the allowed terminations might already be integrated in the associated apparatus. The number of passive devices connected to the bus segment is not limited due to L.S. reasons. If the above rules are respected,

Notes

- Approved associated apparatus must be installed in accordance with manufacturer instructions
- Approved associated apparatus must meet the following requirements:
- Ue or Vec ≤ Ui or Vmax, Ie or Isc ≤ Ii or Imax, Pe ≤ Pi or Pmax
- The maximum non-hazardous area voltage must not exceed 250 V.
- The installation must be in accordance with the National Electrical Code ANSI/NFPA 70 and ANSI/ISA RP 12.06.01
- Each set of wires must be provided with grounded shield. The shield must extend as close to the terminal(s) as possible and it must be grounded shield at I. S. Barrier ground.
- Caution: Use only supply wires suitable for 5 °C above surrounding.
- Warning: Substitution of components may impair intrinsic safety. PE = I. S. Ground
- The polarity for connecting 11 and 12 is of no importance due to an internal rectifier.
- FISCO concept applies to fieldbus / circuit only.
- Entity parameters apply to circuit 2, 3 and 4 and further required to meet the following conditions:

Co ≥ Ci + Ccable; Lo ≥ Li + Lcable

Intrinsically safe if installed as specified in manufacturer's installation manual.

FM- approved for hazardous locations

Class I, Zone 0 AEx ia IIC T6: Class I, II, III Div. 1, Groups A, B, C, D, E, F + G.

Field enclosure NEMA 4X

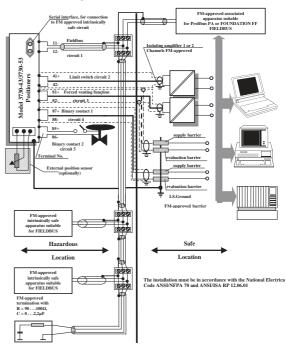


Table 1: Maximum values

		Fieldbus Limit- Forced switches venting-		Binary	- input	Serial-Interface					
	Foundation		Profibus	inductive	function	1	2	active	passive		
Circuit No.	1		1		1	2	3	4	5	6	6
Terminal No.	11 / 12				11 / 12	41 / 42	81 / 82	87 / 88	85 / 86	pl	ng
Groups	А, В ПС	C, D IIB	A, B, C, D IIC / IIB	#/#	#/#	#/#	#/#	#/#	#/#		
Ui or Vmax [V]	24		17,5	16	28	30	V ₀ C 5,88	V ₀ C 8,61	V _{max} 16		
Ii or Imax [mA]	360	380	380	25	115	100	Isc 1	Isc 55	Imax 25		
Pi or Pmax [W]	1,04 2,58 5,32		64 mW	##	##	7,2 mW	250 mW	64 mW			
Ci [nF]	5			60	5,3	0	2μF	0,61μF	0		
Li [μH]		10)	100	0	0	10mH	9mH	0		

Binary- input 1: For connection of an active signal circuit

Binary- input 2: For connection of an passive contact circuit directly on the control valve, e.g.

passive pressure switch for leakage monitoring

Notes:

1. Entity parameters must meet the following requirements:

 $U_0 \le U_i$ or V_{max} , $I_0 \le I_i$ or I_{max} , $P_0 \le P_i$ or P_{max} C_0 or $C_a \ge C_i + C_{cable}$ and L_0 or $L_a \ge L_i + L_{cable}$

 The installation must be in accordance with the National Electrical Code ANSI/NFPA 70 and ANSI/ISA RP 12.06.01

3. Cable entry M 20 x1,5 or metal conduit acc. to dwg. No. 1050-0540

Table 2: FM - approved barrier parameters of circuit 4

Barrier		Supply	barrier	Evaluatio	n barrier	
Darrier	Voc	Rmin	Ioc.	Pmax	Voc	Rmin
circuit 3	≤28V	≥245Ω	≤115mA	##	≤28V	Diode
circuit 4	≤30V	≥300Ω	≤100mA	##	≤30V	Diode

The correlation between temperature classification and permissible ambient temperature ranges is shown in the table 3 below:

Table 3:

Temperature class	Permissble ambient temperature range		
Т6	+60°C		
T5	$-40^{\circ}\mathrm{C} \leq \mathrm{T}_a \leq +70^{\circ}\mathrm{C}$		
T4	+80°C		

Table 4:

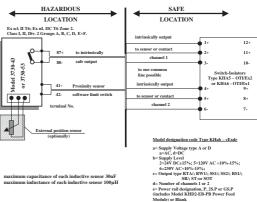
	Foundation Fieldbus or Profibus PA (Non incendive Field wiring)							Limit- switches (inductive)	Forced venting function	Binary- Input 1	/ input 2	
Terminal	11/12								41 / 42	81 / 82	87 / 88	binary
Groups	A, B and IIC			C, D and IIB				#/#	#/#	#/#	eand	
Ui or Vmax [VDC]	20V	24V	30V	32V	20V	24V	30V	32V	20V	30V	30V	rial-interfac sec table 1
Ii or Imax [mA]	464	261	152	130	1,117 A	650	379	324	25mA	100mA	100mA	Maximum values for serial-interface and binary input 2 see table 1
Pi or Pmax [W]	2,32	1,56	1,14	1,14	5,88	3,89	3,85	2,77	64mW	##	##	n values
Ci	5nF							60	5,3	0	ximun	
Li	10µН							100	0	0	Ma	

FM-approved apparatus suitable for FIELDBUS

FM-approved termination with $R = 90...100\Omega$, C = 0...2.2uF Addendum Page 11 Addendum Page 12

FM approved for hazardous locations:

Ex nA II 76; Ex nL IIC 76 Zone 2.


(Eas, II, II), C. 2 Groups, A, B, C, D, E+F.

Installation drawing Control Relay KHA5-OTI/Ex2, KHA6-OTI/Ex1 or KHA6-OTI/Ex2 with Model SJ-b-N Proximity Sensor

(Eas, II, II), C. 2 Groups, A, B, C, D, E+F.

The installation must be in accordance with the National Electrical Code ANSI/NFPA 70 and ANSI/ISA RP 12.06.01

Each pair of LS. wires must be protected by a shield that is grounded at the LS. Ground. The shield must be extend as close to the terminals as possible installation shall be in accordance with the National Electrical Code ANSINFPA 70 and ANSIVISA AR PL 26.66.1

The total series inductance and shunt capacitance of shield wiring shall be restricted to the following maximum values

Control Relay Terminal No.	Groups	L [mH]	C [µF]	V ₀ C [V]	ISC [mA]	V _{max} [V]	R _{min} [Ω]
1-3; 2-3 4-6; 5-6	A + B	192	2,66	↑	1	10.5	**************************************
40,50	C + E	671	7,9	10,5	13		
	D, F, G	1000	21,3	₩	₩	₩	↓

Revisions Control No. 1: March.2006 Addendum to EB 8384-5 EN Revisions Control No. 1: March.2006 Addendum to EB 8384-5 EN

EU Konformitätserklärung/EU Declaration of Conformity/ Déclaration UE de conformité

Die alleinige Verantwortung für die Ausstellung dieser Konformitätserklärung trägt der Hersteller/ This declaration of conformity is issued under the sole responsibility of the manufacturer/ La présente déclaration de conformité est établie sous la seule responsabilité du fabricant. Für das folgende Produkt / For the following product / Nous certifions que le produit

Elektropneumatischer Stellungsregler mit PROFIBUS-PA-Kommunikation / Electropneumatic Positioner with PROFIBUS-PA communication / Positionneur électropneumatique avec communication PROFIBUS-PA Typ/Type/Type 3730-4...

wird die Konformität mit den einschlägigen Harmonisierungsrechtsvorschriften der Union bestätigt / the conformity with the relevant Union harmonisation legislation is declared with/ est conforme à la législation d'harmonisation de l'Union applicable selon les normes:

EMC 2014/30/EU

EN 61000-6-2:2005, EN 61000-6-3:2010, EN 61326-1:2006

Hersteller / Manufacturer / Fabricant:

SAMSON AKTIENGESELLSCHAFT Weismüllerstraße 3 D-60314 Frankfurt am Main Deutschland/Germany/Allemagne

Frankfurt / Francfort, 2016-04-20 Im Namen des Herstellers/ On behalf of the Manufacturer/ Au nom du fabricant.

Gerf Nahler

Zentraliabletungsieller/Head of Department/Chef du département Entwicklung Automation und Integrationslechnologien/ Development Automation and Integration Technologies

ppa. Günther Scherer

SAMSON AKTIENGESELLSCHAFT Weismüllerstraße 3 60314 Frankfurt am Main

Telefon: 069 4009-0 - Telefax: 069 4009-1507 E-Mail: samson@samson.de

Revison 06

EU Konformitätserklärung/EU Declaration of Conformity/ Déclaration UE de conformité

Die alleinige Verantwortung für die Ausstellung dieser Konformitätserklärung trägt der Hersteller/ This declaration of conformity is issued under the sole responsibility of the manufacturer/ La présente déclaration de conformité est établie sous la seule responsabilité du fabricant. Für das folgende Produkt / For the following product / Nous certifions que le produit

Elektropneumatischer Stellungsregler mit PROFIBUS-PA-Kommunikation / Electropneumatic Positioner with PROFIBUS-PA communication / Positionneur électropneumatique avec communication PROFIBUS-PA Typ/Type/Type 3730-41...

entsprechend der EG-Baumusterprüfbescheingung PTB 04 ATEX 2109 ausgestellt von der/ according to the EU Type Examination PTB 04 ATEX 2109 issued by/ établi selon le certificat CE d'essais sur échantillons PTB 04 ATEX 2109 émis par:

> Physikalisch Technische Bundesanstalt Bundesallee 100 D-38116 Braunschweig

Benannte Stelle/Notified Body/Organisme notifié 0102

wird die Konformität mit den einschlägigen Harmonisierungsrechtsvorschriften der Union bestätigt / the conformity with the relevant Union harmonisation legislation is declared with/ est conforme à la législation d'harmonisation de l'Union applicable selon les normes:

EMC 2004/108/EC (bis/to 2016-04-19) EMC 2014/30/EU (ab/from 2016-04-20) EN 61000-6-2:2005. EN 61000-6-3:2010.

EN 61326-1:2006

Explosion Protection 94/9/EC (bis/to 2016-04-19) Explosion Protection 2014/34/EU (ab/from 2016-04-20) EN 60079-31:2009

EN 60079-0:2009, EN 60079-11:2012,

Hersteller / Manufacturer / Fabricant:

SAMSON AKTIENGESELLSCHAFT Weismüllerstraße 3 D-60314 Frankfurt am Main / Germany

Frankfurt/Francfort, 2016-04-06

Im Namen des Herstellers/ On behalf of the Manufacturer/ Au nom du fabricant.

Zentralabtellungsleiten/Head of Department/Chef du déparlement Enfwicklung Automation und Integrationslechnologien/ Development Automation and Integration Technologies

ppa. Günther Scherer Qualitätssicherung/Quality Managment/Assurance Qualité

pa. buthe Mace

SAMSON AKTIENGESELLSCHAFT te 3 60314 Frankfurt am Main

Telefon: 069 4009-0 - Telefox: 069 4009-1507

Revison 06

EU Konformitätserklärung/EU Declaration of Conformity/ Déclaration UE de conformité

Die alleinige Verantwortung für die Ausstellung dieser Konformitätserklärung trägt der Hersteller/ This declaration of conformity is issued under the sole responsibility of the manufacturer/ La présente déclaration de conformité est établie sous la seule responsabilité du fabricant. Für das folgende Produkt/For the following product/Nous certifions que le produit

Elektropneumatischer Stellungsregler mit PROFIBUS-PA-Kommunikation / Electropneumatic Positioner with PROFIBUS-PA communication / Positionneur électropneumatique avec communication PROFIBUS-PA Typ/Type/Type 3730-48..

entsprechend der EG-Baumusterprüfbescheingung PTB 05 ATEX 2010 X ausgestellt von der/ according to the EU Type Examination PTB 05 ATEX 2010 X issued by/ établi selon le certificat CE d'essais sur échantillons PTB 05 ATEX 2010 X émis par:

> Physikalisch Technische Bundesanstalt Bundesallee 100 D-38116 Braunschweig Benannte Stelle/Notified Body/Organisme notifié 0102

wird die Konformität mit den einschlägigen Harmonisierungsrechtsvorschriften der Union bestätigt / the conformity with the relevant Union harmonisation legislation is declared with/ est conforme à la législation d'harmonisation de l'Union applicable selon les normes:

EMC 2004/108/EC (bis/to 2016-04-19) EMC 2014/30/EU (ab/from 2016-04-20)

EN 61326-1:2006

Explosion Protection 94/9/EC (bis/to 2016-04-19) Explosion Protection 2014/34/EU (ab/from 2016-04-20)

EN 60079-15:2010, EN 60079-31:2009

EN 61000-6-2:2005. EN 61000-6-3:2010.

Hersteller / Manufacturer / Fabricant:

SAMSON AKTIENGESELLSCHAFT Weismüllerstraße 3 D-60314 Frankfurt am Main / Germany

Frankfurt / Francfort, 2016-04-06

Im Namen des Herstellers/ On behalf of the Manufacturer/ Au nom du fabricant.

Gerl Nahler

Zentralabtellungsleiter/Head of Department/Chef du déparlement Entwicklung Automation und Integrationslechnologien/ Development Automation and Integration Technologies ppa. Günther Scherer Qualitätssicherung/Quality Managment/Assurance Qualité

SAMSON AKTIENGESELLSCHAFT Weismüllerstraße 3 60314 Frankfurt am Main Telefon: 069 4009-0 - Telefox: 069 4009-1507

ppa. biruthe Mace

Revison 06

Ca 3730-48 de en fo se 05, pd

