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Temperature regulators

The characteristic feature of self-operated temperature regulators is their
compact design, including a sensor, a valve and a capillary tube. Their sim-
ple operating principle is based on fundamental mechanical, physical and
thermodynamic laws.

A temperature control loop with a heat exchanger is shown in Fig.1. When
the water has left the heat exchanger and circulates in the domestic hot water
loop, its temperature must be kept constant. In the heating loop, a heat trans-
fer medium, e.g. hot water, circulates through the heat exchanger and trans-
fers part of its heat to the domestic hot water loop. If we assume that the
temperature of the hot water remains constant, the transferred heat quantity
depends on the flow rate. The flow of hot water is adjusted by the
self-operated regulator.

The sensor measures the temperature of the variable to be controlled and
converts the measured value into a travel signal which is used as output vari-
able. The sensor output signal is transmitted via the capillary tube to the valve
where the signal changes the position of the plug as required. Temperature
regulators obtain their actuating power from the medium to be controlled, so
they do not need supply lines or auxiliary devices. This is the most important
benefit of self-operated regulators. They keep costs low, while exhibiting
high operational reliability.
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Sensors

Sensors are used to measure the temperature of the medium to be controlled.
A good sensor must fulfill two important requirements. It must respond
quickly to temperature changes and provide accurate values of variables
that change over time. The self-operated regulator measures variables ac-
cording to the three following principles:

4 liquid expansion

4adsorption

4vapor pressure

These principles utilize the change in volume, in structure or the conversion of
a matter�s state of aggregation.

Liquid expansion principle

When measuring the expansion of a liquid, the quality of the results depends
to a great extent on two factors: the sensor volume and the specific heat ca-
pacity of the filling medium.
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� Sensor volume

Solids, gases and almost all liquids expand when the temperature increases.
This physical principle of expansion is utilized by thermometers. An increase
in temperature causes the liquid level in a capillary to rise and the height of
the liquid column indicates the measured temperature.

A sensor operating on the liquid expansion principle is shown in Fig. 2. The
liquid expands in the cylinder when the temperature rises. As the wall of the
cylinder prevents lateral expansion, the liquid expands only in the axial di-
rection, pushing the piston and the connected pin upward.

The increase in volume can be calculated as follows:

The expansion of the filling medium is determined by two factors - the spe-
cific coefficient of expansion γ which depends on the type of fluid used and
the change in temperature ∆T.

The height of the pin protruding from the cylinder is a measure for the expan-
sion and represents a function of the temperature (h=f(T)). To achieve a par-
ticular travel of the pin ∆h, the shape of the operating element must be
considered and adapted as required. Generally, small sensor volumes yield
larger travels than large volumes (Fig. 2). In instrumentation, small sensor
volumes are preferred since the measuring span is better represented when
the pin travel is large. In this way, more accurate measurement results are
obtained. However, a disadvantage of small-volume sensors is the low
power transmission. When sizing a sensor, a compromise must be found be-
tween the change in travel and temperature as well as the increase in force.
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� Filling medium

To quickly obtain accurate measurements, the quantity of heat a sensor must
absorb and release should be as low as possible. This can be achieved either
by keeping the volume or the mass low, or by choosing a filling fluid with a
low specific heat capacity. The quantity of heat stored in the fluid calculates
as follows:

cp is the specific heat capacity, m the mass and ∆T the change in temperature
in °C. Note that the specific heat capacity is not constant, but changes with
the temperature.

Due to its high specific heat capacity, water is not suitable as filling medium.
It has yet another disadvantage. With the exception of water, all liquids ex-
pand continuously with increasing temperatures and condense when the
temperatures fall. Water, however, reaches its highest density at 4 °C and
expands at higher as well as lower temperatures. Therefore, the temperature
measured in these ranges would not be clear.

SAMSON temperature sensors use low-viscous, synthetic oil as filling me-
dium. This liquid is harmless, i.e. it endangers neither health nor environ-
ment. It can be discharged with the waste water if leakage occurs (water
danger class 0). Formerly used silicone oils were not accepted by the auto-
motive industry since silicone oils cause wetting problems with water-based
lacquer.

Apart from liquids, resins and elastomers can also be used as filling fluid. Ex-
pansion resins are particularly favorable when a great change in volume is
to be achieved within a narrow temperature range.

8

Self-operated Regulators ⋅ Temperature Regulators

SA
M

SO
N

A
G

⋅V
74

/
H

S

W = cp m ∆T

water not suitable as

filling medium

small heat capacity for

fast-responding sensors



Adsorption principle

The adsorption principle is based on a physical method. The temperature
sensor contains activated carbon and carbon dioxide. When the sensor is
heated by the medium to be measured, the activated carbon releases single
CO2 molecules. The pressure inside the sensor (Fig. 3) increases, represent-
ing a significant value for each temperature value. When the internal pres-
sure is transmitted via a control line to the operating bellows, the valve
position is changed with respect to the temperature.

The most important benefit of the adsorption principle is its good adaptation
to the respective application. The measuring span of an adsorption sensor
can be set in two ways:

4different types of activated carbon and gases yield different pres-
sure-temperature curves;

4varied filling conditions yield different operating ranges. Four overlap-
ping set point ranges are available, covering the range from 0 to 150 °C.

The disadvantage of adsorption sensors is that their thrust is much smaller
than that developed by vapor-pressure or liquid-expansion sensors.
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Vapor pressure principle

The vapor pressure principle is based on a thermodynamic method. When a
liquid is subjected to heat, it begins to boil at a certain temperature and
steam is generated. The boiling temperature, however, depends on the pre-
vailing pressure. The lower the pressure, the lower the temperature at which
the liquid starts to boil.

Example: In an open vessel, water boils at 100 °C. The boiling temperature
in a pressure cooker, however, is considerably higher because the pressure
created in the airtight cooker is much higher.

The steam pressure curves of hydrocarbons are plotted in Fig. 4. When the
temperature of the medium to be measured increases, the boiling pressure in
the closed sensor system increases as well, following the rising steam curve.
Depending on the measured temperature, a significant pressure is created in
the sensor. The internal sensor pressure acts on a bellows in the thermostat,
generating a thrust. The filling medium in sensors for self-operated regula-
tors often is a mixture of hydrocarbon compounds (HC-compounds).
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The maximum ambient temperature must be minimum 15 K lower than the
set point to prevent the filling medium from vaporizing in the control line.

The basic properties of the different measurement methods are compared in
the following table.
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Sensor liquid
expansion

solids
expansion

vapor
pressure

adsorption

thrust strong strong medium weak

expansion
behavior

linear almost linear not linear linear

excess temp.
safety

low low medium high

mount. position any any defined any

time constant medium large small small

Table 1: Properties of different sensor systems



How the sensor design influences
the dynamic behavior

Types of bulb sensors

Bulb sensors are in direct contact with the medium. The resulting heat ex-
change is characterized by the heat transfer coefficient.

The heat transfer coefficients of liquids are remarkably higher than those of
gases. Temperature changes of a liquid act therefore faster on the sensor
case, the filling medium and finally the valve position. When sizing the tem-
perature sensor, the surface provided for heat transfer must be as large as
possible. While the cylindrical surface of a bulb sensor is sufficient for mea-
suring water and other liquids, gases require a specially manufactured
four-bulb sensor. In this sensor, the ratio between the sensor surface and the
volume of the filling medium is larger than that of the bulb sensor.
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Fig. 5: Unit step response of a bulb sensor and a four-bulb sensor
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Fig. 5 compares the unit step response of a bulb sensor with that of a
four-bulb sensor after they have been immersed into warm circulating water
and into an air duct. The temperature difference is so big that the pin passes
through its entire travel. Particularly in the air duct, the larger sensor volume
proves favorable. The pin of the four-bulb sensor almost reaches its final tra-
vel after twelve minutes, while the bulb sensor takes 40 minutes, which is too
slow for fast control loops.

Set point adjustment

Self-operated regulators usually exhibit proportional control action (P regu-
lators). In the case of self-operated temperature regulators, the P action
causes the valve travel to change proportionally with the measured tempera-
ture T. The proportional-action coefficient is KP (formerly: proportional band
xP; xP = 100%/KP). The following equation describes the control action of
temperature regulators.
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Fig. 1: Effect of KP on measuring span
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As described in the Control Engineering Fundamentals (see also Lit [2]), P re-
gulators have a steady-state error. When the steady-state error is to be kept
small, a large proportional-action coefficient is required (small proportional
band). This means for the temperature regulator that a large travel must be
achieved at a small ∆T. The measuring span of the sensor becomes accord-
ingly smaller (Fig. 6).

However, narrow measuring spans are an obstacle to the universal applica-
tion of sensors. Therefore, the temperature regulator in Fig. 7 is equipped
with a set point adjuster. In the sensor, an externally adjustable piston can be
moved to change the volume of the system. When the piston is pushed into
the right cylinder, the pin in the operating element is lifted, providing the re-
quired volume. As a result of the changed pin position, the travel position of
the valve is changed, too.

Excess temperature

When the temperature reaches the upper limit of the set point range, the pin
is fully extended. The valve is in its end position and the liquid fills the sensor
completely. When the temperature rises above this value, the liquid in the
sensor cannot expand further. If no equalizing volume is provided, the rising
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internal pressure will damage the sensor. To prevent this, a pressure relief fit-
ting is installed (Fig. 8).

When excess temperatures occur, the rising filling pressure acts on the piston
bottom and pushes the piston out of the sensor against the force of the excess
temperature spring. This increases the sensor volume. The excess tempera-
ture spring has no effect on the set point adjustment.

Mounting position

A prerequisite for the proper functioning of temperature control systems is
the optimum location of the sensor. It should be totally immersed in the me-
dium to be measured. Fig. 9 illustrates various mounting positions. If the sen-
sor is mounted perpendicular to the flow direction (Fig.9 d), the sensor
surface is in contact with the medium only shortly. In this case, the absorbed
heat quantity can be too small to yield accurate measurement results.

Another important requirement is that the sensor measure nearly without
dead time. Dead times occur, for example, in a heating system when the sen-
sor is not located directly at the heat source, e.g. the heat exchanger, but far
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away in the heating pipe. In this case, temperature changes are measured
with delay.
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Dynamic behavior of sensors

The dynamic behavior of a self-operated regulator depends on the dynamic
behavior of its sensor. The dynamic behavior is characterized by the time
constant τ. The constant describes the time the pin needs to reach approxi-
mately 63 percent of the new operating point when forced by a step change
in temperature.

When looking at the sensor from the viewpoint of control engineering, the
sensor can be regarded as energy store. Its dynamic behavior can be de-
scribed by means of an exponential function using the time constant T1= τ
(first-order delay). When mounting a thermowell, another energy store is
added to the system. Hence, a second-order system is created. To describe
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such a system, the time constant Tu and the build-up time Tg can be used. For
further details, please refer to the Technical Information L102 EN.

As can be seen in Fig. 10, small time constants are typical to fast-responding
sensors.

Table 2 lists the time constants of the different SAMSON sensors. Measure-
ments have been made in water. You can see from the table below that a
thermowell used with an adsorption and a vapor pressure sensor causes
long delays. So the fast response times inherent to those sensors are practi-
cally eliminated and they are almost as �slow� as liquid-expansion sensors.
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Principle type without thermowell with thermowell

liquid expansion 2213 70 120

2231 70 120

2232 65 110

2233 25

2234 15

2235 10

adsorption 2430 15 30 40 80

2212 40

2430-L 8

2439 40

vapor pressure 2430-3 3 3 55

2403 40

sensor diameters d= 9.5 16 div. 9.5 16 div.

Table 2: Effect of thermowell on time constant

thermowells prolong

the response time



Standard materials for sensors and thermowells are usually copper or bron-
ze because of their excellent conductivity. For aggressive media, stainless
steel versions are used which, however, increase the time constants of the
sensors by approximately ten percent. With thermowells, stainless steel does
not affect the time constant.

Thermowells are not suited to be used with sensors for air. Due to the special
sensor shape, a narrow air gap is formed between the thermowell and the
sensor, which has an insulating effect. The time constant of an air sensor with
thermowell would be much higher than that of a standard sensor with
thermowell.

NOTE: You may find technical literature where variables, such as T0.5

(half-value period) or T0.9 (90% value) are used to describe the dynamic be-
havior of sensors. These values can be calculated for first-order systems us-
ing the equation below and the time constant τ:
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Valves and their applications

Force-balancing

The signal pressure of self-operated regulators is generated by the expan-
sion of the filling medium in the operating element. To make the interaction of
the different forces understandable, a valve balanced by a bellows is de-
scribed in the following example (see also Lit [3]).

The upstream pressure p1 and the downstram pressure p2 acting on the valve
plug are balanced by the bellows. As a result, the actuating force FA is op-
posed only by the pre-loaded spring FF (Fig. 11). Both forces are balanced in
a state of equilibrium.
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The self-operated regulator is used to reduce or increase the flow rate when
the temperature at the measuring point rises or falls.

The temperature is regulated as follows:

4When the medium is heated, the filling liquid in the operating element ex-
pands and exerts the actuating force FA on the valve.

4The valve closes against the spring force FF, reducing the flow of the heat-
ing medium.

4When the flow is reduced, the temperature falls until a new equilibrium of
forces and, hence, a new valve position is reached.

NOTE: When sizing a system including a heat exchanger, the upstream tem-
perature must be minimum 10 K above the set point temperature to ensure
safe closing of the valve.
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Mixing and diverting valves

Heating and cooling control systems require different valve styles. Globe val-
ves control one flow to adjust the desired temperature. Three-way valves, on
the other hand, mix or divert two heat flows.
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Three-way valves have three ports (A, B, AB), while globe valves have two.
When no actuating force is exerted on the valve, a return spring ensures that
the double plug is firmly placed on one of the two seats. In mixing valves
(Fig.12), the heating medium enters at port B via the seat/plug assembly and
leaves through port AB. Port A is closed. When an actuating force acts on the
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Fig. 14: Example of a heating system
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plug stem, the valve moves towards its other end position, reducing the flow
through the inlet port B and opening the inlet port A.

The flow through diverting valves (Fig. 13) is quite different. Here, the cool-
ing medium enters at port AB. The streams are diverted according to the
valve position and finally leave through the ports A and B.
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Fig. 15: Example of a cooling system
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The operating principle of the valves and their application in a heating and a
cooling system are illustrated in Figs. 13 and 14.

The Figs. 13 and 14 show typical installation examples where the valves can
be installed either in the flow pipe or in the return pipe. In heating systems
with high temperatures and low pressures, cavitation can cause problems,
therefore the valve should be installed in the cooler return pipe.

When engineering the heating or cooling installation, make sure that the
process medium flows in the opening direction of the plug of the mixing or di-
verting valve so that "vibrations" near the closing position are prevented.
Otherwise the small surface, the high velocity and the low pressure would
cause the plug to be seized in the seat and released again when the flow is
interrupted.
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Globe valves in cooling service

The globe valves described above close when the temperature at the sensor
rises, hence, they are suitable for heating service. In cooling installations,
however, a valve is required that opens with increasing temperature. This
can be achieved either by changing the seat/plug position or by installing a
reversing device (Fig. 16) between the sensor and the bellows housing of a
�normal� globe valve. In the latter case, the valve is closed by the spring force
and opens when the temperature rises.
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Appendix A1:
Additional literature

[1] Terminology and Symbols in Control Engineering
Technical Information L101 EN; SAMSON AG

[2] Controllers and Controlled Systems
Technical Information L102 EN; SAMSON AG

[3] Self-operated Regulators
Technical Information L202 EN; SAMSON AG
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