TYPENBLATT SAMSON RINGO

## T 8079

# **Durchgangs- oder Eckventil Typ 3595**

ANSI-Ausführung



#### Anwendung

Wartungsfreundliches Cage-Ventil für Regel- und Auf/Zu-Anwendungen in der Öl- und Gasindustrie sowie bei Hochtemperaturanwendungen in der Kraftwerkstechnik

Nennweite 1) NPS 3/4 bis 32 Nenndruck Class 150 bis 2500

**Temperaturen** −325 bis +1292 °F (−196 bis +700 °C)

#### Merkmale

- Kombination aus Cage-Ventil in Durchgangs- oder Eckform und pneumatischem Antrieb
- Geeignet für Flüssigkeiten und Gase
- Kegel über den gesamten Hubbereich käfiggeführt
- Vibrationsarm durch minimalen Abstand zwischen Kegel und Käfig
- Lineare oder gleichprozentige Kennlinie
- Reduzierte C<sub>v</sub>-Werte für alle Nennweiten
- Wahlweise als Flanschgehäuse oder Gehäuse mit Anschweißenden oder Vorschuhenden
- Pneumatischer Antrieb 3276 oder Typ 3271 in unterschiedlichen Größen optimiert für die einzelnen Nennweiten des Ventils
- Membranantrieb wahlweise mit Zentralfeder oder mit mehreren Federn (Multi-Spring-Ausführung)
- Kolbenantrieb wahlweise doppeltwirkend oder mit Sicherheitsstellung (über Zentralfeder)
- Problemloser Anbau von Peripheriegeräten, z. B. von Stellungsreglern, Grenzsignalgebern und Magnetventilen
- Leckage-Klasse V auch mit Druckentlastung über den gesamten Temperaturbereich (in Verbindung mit Ventilgarnitur PILOT/STD™ oder PILOT/LDB™)

### Wählbare Ventilgarnituren

- USS/STD<sup>™</sup> oder USS/LDB<sup>™ 2</sup>: Ausführung ohne Druckentlastung (unbalanced plug, single seat)
- BSS/STD™ oder BSS/LDB™<sup>2)</sup>: Ausführung mit Druckentlastung (balanced plug, single seat)
- CAVLESS™: K\u00e4fig mit abgesetzten Bohrungen gegen Kavitation
- PILOT/STD™ oder PILOT/LDB™ 2)
- MULTICYL™: mehrstufiger Käfig
- MULTISTEP™: Sitz mit eingearbeiteten Nuten



Angaben in diesem Typenblatt überwiegend bis Nennweite NPS 16. Angaben für größere Nennweiten oder weitere Ausführungen auf Anfrage.

rungen auf Anfrage.

2) geräuschreduzierende Ausführung

## Ventilgehäuse in Schmiede- oder Gussausführung

- Stahlguss
- Warmfester Stahlguss
- Edelstahl
- Sonderwerkstoffe (z. B. Schmiedestahl, Duplexstahl, Super-Duplexstahl oder Inconel®).

#### Weitere Ausführungen

- Ventil in DIN-Ausführung (auf Anfrage)
- Antrieb mit Handrad (auf Anfrage)

#### Wirkungsweise

Das Ventil wird in der vorgegebenen Richtung durchströmt. Die Stellung des Ventilkolbens bestimmt dabei den freigegebenen Querschnitt des Käfigs.

## Sicherheitsstellungen

Je nach Anordnung der Druckfeder im Antrieb hat das Stellventil zwei Sicherheitsstellungen, die bei Ausfall der Hilfsenergie wirksam werden.

- Antriebsstange durch Feder ausfahrend (FA): Bei Ausfall der Hilfsenergie wird das Ventil geschlossen.
- Antriebsstange durch Feder einfahrend (FE): Bei Ausfall der Hilfsenergie wird das Ventil geöffnet.

#### Ventilgarnituren

- USS/STD™ oder USS/LDB™ (Bild 2)
  - Kegel USS™ ohne Druckentlastung
  - Standardkäfig STD™ oder Käfig in geräuschreduzierender Ausführung LDB™
  - Geeignet für Regel- und Auf/Zu-Ventile
  - Einsatz im Flashing-Betrieb möglich
- BSS/STD™ oder BSS/LDB™ (Bild 3)
  - Kegel BSS™ mit Druckentlastung
  - Standardkäfig STD™ oder Käfig in geräuschreduzierender Ausführung LDB™
  - Geeignet für niedrige bis mittlere Differenzdrücke
  - Dichter Abschluss
- CAVLESS™ (Bild 4)
  - Kegel BSS™ mit Druckentlastung
  - Kavitationsmindernder K\u00e4fig CAVLESS™
  - Geeignet für Flüssigkeitsanwendungen, bei denen es zu starker Kavitation kommt, z. B. Speisewasserversorgungen oder Kondensatsysteme
  - Einsatz im Flashing-Betrieb möglich
- PILOT/STD™ oder PILOT/LDB™ (Bild 5)
  - Kegel PILOT™ erlaubt das dichte Absperren bei geringer Stellkraft des Antriebs
  - Standardkäfig STD™ oder Käfig in geräuschreduzierender Ausführung LDB™
  - Geeignet für Ventilgrößen ab NPS 4
  - Geeignet für hohe Temperaturen und hohe Drücke
- MULTICYL™ (Bild 6)
  - Kegel BSS™ mit Druckentlastung
  - Käfig MULTICYL™ für Druckabbau über mehrere Drosselstufen
  - Geeignet für Gas- und Flüssigkeitsanwendungen



Bild 2: Ventilgarnitur USS/STD™ und USS/LDB™



Bild 3: Ventilgarnitur BSS/STD™ und BSS/LDB™



**Bild 4:** Ventilgarnitur CAVLESS™



**Bild 5:** Ventilgarnitur PILOT/STD™ und PILOT/LDB™

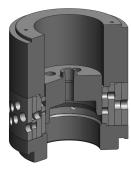



Bild 6: Ventilgarnitur MULTICYL™

## MULTISTEP™ (Bild 7)

- Sitz mit eingearbeiteten Nuten
- Für geringe und mittlere Durchflüsse in Kombination mit hohem Druckabfall (Kavitation und Flashing)
- Für Ventilgrößen bis NPS 2
- In Kombination mit unterschiedlichen Kegeltypen möglich
- Optimiert die Regelung beim Anfahren des Ventils

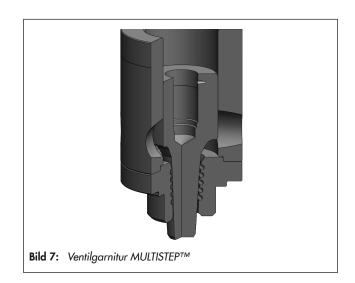



Tabelle 1: Technische Daten

| Durchgangsven  | ntil Typ 3595           | Gussg       | jehäuse                 | Schmiedegehäuse        |               |  |  |
|----------------|-------------------------|-------------|-------------------------|------------------------|---------------|--|--|
| Nennweite      |                         | NPS ¾ bis 2 | NPS 3 bis 32            | NPS ¾ bis 2            | NPS 3 bis 12  |  |  |
| Nenndruck      |                         |             | Class 150               | bis 2500               |               |  |  |
|                | Flansche                | •           | •                       | •                      | •             |  |  |
| Anschlussart   | Anschweißenden          | •           | •                       | •                      | •             |  |  |
|                | Vorschuhenden           | •           | •                       | •                      | •             |  |  |
| Kennlinienform |                         |             | gleichprozentig · linea | r · andere auf Anfrage | e             |  |  |
| Maximal zuläss | siger Temperaturbereich |             |                         |                        |               |  |  |
|                | USS/STD™ · USS/LDB™     |             | -325+                   | 1292 °F (–196+700      | ) °C)         |  |  |
|                | BSS/STD™ · BSS/LDB™     |             | Leckage-Klasse IV, V un | d VI: -325+482 °F      | (-196+250 °C) |  |  |
| Ventilgarnitur | CAVLESSTM               |             | Leckage-Klasse IV, V un | d VI: -325+482 °F      | (-196+250 °C) |  |  |
|                | PILOT/STD™ · PILOT/LDB™ |             | Leckage-Klasse \        | ⁄: −4+1292 °F (−20     | +700 °C)      |  |  |
|                | MULTICYLTM              |             | Leckage-Klasse IV, V un | d VI: -325+482 °F      | (-196+250 °C) |  |  |

Tabelle 2: Werkstoffe

| Durchgangsver    | ntil Typ 3595           |                                            | Gussgehäuse                                                     | Schmiedegehäuse      |  |  |  |  |
|------------------|-------------------------|--------------------------------------------|-----------------------------------------------------------------|----------------------|--|--|--|--|
|                  |                         | Stahlguss bzw.<br>Schmiedestahl            | A216 WCB                                                        | A105                 |  |  |  |  |
|                  | Standard-<br>werkstoffe | warmfester Stahlguss<br>bzw. Schmiedestahl | A217 WC6<br>A217 WC9                                            | A182 F11<br>A182 F22 |  |  |  |  |
| Gehäuse und      |                         | Edelstahl                                  | A351 CF8M                                                       | A182 F316            |  |  |  |  |
| Ventiloberteil   |                         | Duplexstahl                                | A351-CK3MCuN<br>A890 Gr. 4A CD3MN                               | A182 F44<br>A182 F51 |  |  |  |  |
|                  | Sonderwerk-<br>stoffe   | Super-Duplexstahl                          | A890 Gr. 5A CE3MN<br>A890 Gr. 6A CD3MWCuN                       | A182 F53<br>A182 F55 |  |  |  |  |
|                  |                         | Inconel®                                   | A494 CW6MC                                                      | B564 N06625          |  |  |  |  |
| Ventilgarnitur ( | Sitz, Kegel, Käfig      | ı,)                                        | AISI 410, AISI 420, AISI 316 und Stell<br>A182 F44, A182 F53, A |                      |  |  |  |  |
| Pneumatischer    | Antrieb mit Zen         | tralfeder                                  |                                                                 |                      |  |  |  |  |
| Rahmen           |                         |                                            | Stahl                                                           | guss                 |  |  |  |  |
| Deckel           |                         |                                            | Stahlblech                                                      |                      |  |  |  |  |
| Membran          |                         |                                            | NBR, EPDM                                                       |                      |  |  |  |  |

T 8079 3

 Tabelle 3: Durchflusskoeffizienten USS/STD™, BSS/STD™ und PILOT/STD™

| Nennweite | Lineare Kennlinie    | Gleichprozentige Kennlinie | Sit       | z-Ø   | Hub US | S/STD™      | Hub BSS | S/STD™      | Hub PILC | T/STD™ |
|-----------|----------------------|----------------------------|-----------|-------|--------|-------------|---------|-------------|----------|--------|
| NPS       | C <sub>V</sub> -Wert | C <sub>v</sub> -Wert       | in        | mm    | in     | mm          | in      | mm          | in       | mm     |
|           | 54                   | 40                         | 1.00      | 40.00 | 0.70   | -00         | 0.70    | 00          |          |        |
| 2         | 38                   | 28                         | 1,92      | 48,88 | 0,79   | 20          | 0,79    | 20          | _        | -      |
| 2         | 122                  | 90                         | 2.02      | 74.00 | 1.0/   | 20          | 1.07    | 32          |          |        |
| 3         | 85                   | 63                         | 2,92      | 74,28 | 1,26   | 32          | 1,26    | 32          | _        | -      |
| 4         | 216                  | 160                        | 3,92      | 99,68 | 1,77   | 45          | 1,77    | 45          | 2,01     | 51     |
| 4         | 150                  | 112                        | 3,72      | 77,00 | 1,77   | 43          | 1,77    | 43          | 2,01     | JI     |
| 6         | 490                  | 360                        | 5,84      | 148,4 | 2,52   | 64          | 2,52    | 64          | 2,83     | 72     |
| 0         | 343                  | 252                        | 3,04      | 140,4 | 2,32   | 04          | 2,32    | 04          | 2,03     | / 2    |
| 8         | 864                  | 640                        | 7,94      | 201,6 | 3,35   | 85          | 3,35    | 85          | 3,74     | 95     |
|           | 605                  | 450                        | 7,74      | 201,0 | 3,33   | 0.5         | 3,33    | 0.5         | 3,74     | 75     |
| 10        | 1350                 | 1000                       | 9,88      | 251   | 4,21   | 107         | 4,21    | 107         | 4,61     | 117    |
| 10        | 945                  | 700                        | 7,00      | 231   | 4,21   | 107         | 4,21    | 107         | 4,01     | 117    |
| 12        | 1950                 | 1440                       | 11,88     | 301,8 | 5,00   | 127         | 5,00    | 127         | 5,47     | 139    |
| 12        | 1365                 | 1010                       | 11,00     | 301,0 | 3,00   | 12/         | 3,00    | 12/         | 3,47     | 107    |
| 14        | 2650                 | 1960                       | 13,84     | 351,6 | 5,98   | 152         | 5,98    | 152         | 6,46     | 164    |
| 14        | 1855                 | 1370                       |           | 331,0 | 3,70   | 132         | 3,70    | 132         | 0,40     | 104    |
| 16        | 3460                 | 2560                       |           | 402,4 | 6,97   | 1 <i>77</i> | 6,97    | 1 <i>77</i> | 7,52     | 191    |
| 10        | 2420                 | 1790                       |           | 13,04 | 402,4  | 0,77        | 177     | 0,77        | 177      | 7,52   |
| 18        | 4383                 | 3240                       | 17,84     | 453,2 | 7,99   | 203         | 7,99    | 203         | 8,54     | 217    |
|           | 3065                 | 2269                       | 17,04     | 400,2 | .,     | 200         | .,      | 200         | 0,04     |        |
| 20        | 5411                 | 4000                       | 19,84     | 504   | 8,86   | 225         | 8,86    | 225         | 9,49     | 241    |
|           | 3784                 | 2801                       | . , , , . |       | 0,00   |             | 0,00    |             | 77.7     |        |
| 22        | 6547                 | 4840                       | 21,84     | 554,8 | 9,88   | 251         | 9,88    | 251         | 10,51    | 267    |
|           | 4579                 | 3389                       | 2.70.     | 00.70 | ,,00   |             | ,,00    |             | . 6/6 .  |        |
| 24        | 7792                 | 5760                       | 23,84     | 605,6 | 10,79  | 274         | 10,79   | 274         | 11,50    | 292    |
|           | 5449                 | 4034                       |           |       |        |             |         |             | ,        |        |
| 26        | 9144                 | 6760                       | 25,84     | 656,4 | 11,69  | 297         | 11,69   | 297         | 12,40    | 315    |
|           | 6395                 | 4734                       | ,         | ,     | ,      |             | ,       |             | ,        |        |
| 28        | 10605                | 7840                       | 27,84     | 707,2 | 12,60  | 320         | 12,60   | 320         | 13,39    | 340    |
|           | 7417                 | 5490                       |           | ,     | ,      |             | ,       |             | -,       |        |
| 30        | 12174                | 9000                       | 29,84     | 758   | 13,50  | 343         | 13,50   | 343         | 14,37    | 365    |
|           | 8515                 | 6303                       | ,         |       | ,      |             | ,       |             | ,        |        |
| 32        | 13852                | 10240                      | 31,84     | 808,8 | 14,41  | 366         | 14,41   | 366         | 15,35    | 390    |
|           | 9688                 | 7171                       |           |       |        |             |         |             |          |        |

 $\textbf{Tabelle 4:} \ \, \textit{Durchflusskoeffizienten USS/LDB}^{\intercal M}, \textit{BSS/LDB}^{\intercal M} \, \textit{und PILOT/LDB}^{\intercal M}$ 

| Nennweite | Lineare Kennlinie    | Gleichprozentige Kennlinie | Sitz  | z-Ø   | Hub US | S/LDB <sup>TM</sup> | Hub BS | S/LDB™ | Hub PILC | T/LDB™ |
|-----------|----------------------|----------------------------|-------|-------|--------|---------------------|--------|--------|----------|--------|
| NPS       | C <sub>V</sub> -Wert | C <sub>V</sub> -Wert       | in    | mm    | in     | mm                  | in     | mm     | in       | mm     |
| 2         | 49                   | 36                         | 1,92  | 48,88 | 0,79   | 20                  | 0.70   | 20     |          |        |
|           | 34                   | 25                         | 1,92  | 48,88 | 0,79   | 20                  | 0,79   | 20     | _        | _      |
| 3         | 110                  | 81                         | 2,92  | 74,28 | 1,26   | 32                  | 1,26   | 32     |          |        |
| J         | 77                   | 57                         | 2,72  | 74,20 | 1,20   | 32                  | 1,20   | 32     | _        |        |
| 4         | 195                  | 144                        | 2 02  | 99,68 | 1,77   | 45                  | 1,77   | 45     | 2,01     | 51     |
| 4         | 137                  | 100                        | 3,92  | 77,00 | 1,77   | 43                  | 1,//   | 45     | 2,01     | 31     |
| 6         | 440                  | 325                        | 5,84  | 148,4 | 2,52   | 64                  | 2,52   | 64     | 2,83     | 72     |
| 0         | 310                  | 230                        | 3,64  | 140,4 | 2,32   | 04                  | 2,32   | 04     | 2,03     | / 2    |
| 8         | 780                  | 580                        | 7,94  | 201,6 | 3,35   | 85                  | 3,35   | 85     | 3,74     | 95     |
| 0         | 540                  | 405                        | 7,74  | 201,0 | 3,33   | 65                  | 3,33   | 65     | 3,74     | 73     |
| 10        | 1215                 | 900                        | 9,88  | 251   | 4,21   | 107                 | 4,21   | 107    | 4,61     | 117    |
| 10        | 850                  | 630                        | 7,00  | 231   | 4,21   | 107                 | 4,21   | 107    | 4,01     | 117    |
| 12        | 1750                 | 1300                       | 11 00 | 201.0 | 5.00   | 127                 | 5.00   | 127    | 5 47     | 139    |
| 12        | 1225                 | 910                        | 11,88 | 301,8 | 5,00   | 12/                 | 5,00   | 12/    | 5,47     | 139    |

| Nennweite | Lineare Kennlinie    | Gleichprozentige Kennlinie | Sitz  | z-Ø   | Hub USS/LDB™ |      | Hub BSS     | S/LDB™ | Hub PILOT/LDB™ |     |
|-----------|----------------------|----------------------------|-------|-------|--------------|------|-------------|--------|----------------|-----|
| NPS       | C <sub>v</sub> -Wert | C <sub>V</sub> -Wert       | in    | mm    | in           | mm   | in          | mm     | in             | mm  |
| 1.4       | 2380                 | 1760                       | 10.04 | 251 / | <i>5</i> 00  | 1.50 | <i>5</i> 00 | 1.50   |                | 1// |
| 14        | 1670                 | 1230                       | 13,84 | 351,6 | 5,98         | 152  | 5,98        | 152    | 6,46           | 164 |
| 16        | 3110                 | 2300                       | 1504  | 402,4 | 4.07         | 177  | 4.07        | 177    | 7.50           | 191 |
| 10        | 2175                 | 1610                       | 15,84 | 402,4 | 6,97         | 1//  | 6,97        | 1//    | 7,52           | 191 |
| 18        | 3948                 | 2919                       | 1704  | 452.2 | 7.00         | 203  | 7.00        | 203    | 0.54           | 217 |
| 10        | 2761                 | 2042                       | 17,84 | 453,2 | 7,99         | 203  | 7,99        | 203    | 8,54           | 217 |
| 20        | 4874                 | 3604                       | 19,84 | 504   | 8,86         | 225  | 8,86        | 225    | 9,49           | 241 |
| 20        | 3408                 | 2522                       | 19,04 | 304   | 0,00         | 223  | 0,00        | 223    | 9,49           | 241 |
| 22        | 5897                 | 4360                       | 21.04 | 554,8 | 0.00         | 251  | 0.00        | 251    | 10.51          | 267 |
| 22        | 4124                 | 3051                       | 21,84 | 334,6 | 9,88         | 231  | 9,88        | 231    | 10,51          | 207 |
| 24        | <i>7</i> 018         | 5189                       | 22.04 | 605,6 | 10,79        | 274  | 10,79       | 274    | 11,50          | 292 |
| 24        | 4908                 | 3631                       | 23,84 | 003,6 | 10,79        | 2/4  | 10,79       | 2/4    | 11,30          | 272 |
| 26        | 8237                 | 6090                       | 25.04 | 656,4 | 11 40        | 297  | 11 40       | 297    | 12.40          | 315 |
| 20        | 5760                 | 4261                       | 25,84 | 030,4 | 11,69        | 297  | 11,69       | 297    | 12,40          | 313 |
| 28        | 9553                 | 7063                       | 27,84 | 707,2 | 12,60        | 320  | 12,60       | 320    | 13,39          | 340 |
| 20        | 6681                 | 4942                       | 27,04 | 707,2 | 12,00        | 320  | 12,00       | 320    | 13,37          | 340 |
| 20        | 10966                | 8108                       | 20.04 | 750   | 12.50        | 343  | 12.50       | 242    | 1427           | 365 |
| 30        | 7669                 | 5673                       | 29,84 | 758   | 13,50        | 343  | 13,50       | 343    | 14,37          | 303 |
| 22        | 12477                | 9225                       | 21.04 | 000 0 | 1 4 41       | 244  | 1 4 41      | 244    | 15.25          | 300 |
| 32        | 8726                 | 6455                       | 31,84 | 808,8 | 14,41        | 366  | 14,41       | 366    | 15,35          | 390 |

**Tabelle 5:** Durchflusskoeffizienten CAVLESS™

| Nennweite | Lineare Kennlinie    | Gleichprozentige Kennlinie | Sitz  | z-Ø   | Hub  |             |  |
|-----------|----------------------|----------------------------|-------|-------|------|-------------|--|
| NPS       | C <sub>∨</sub> -Wert | C <sub>V</sub> -Wert       | in    | mm    | in   | mm          |  |
| 2         | 35                   | 25                         | 1.00  | 40.00 | 1.00 | 24          |  |
|           | 25                   | 18                         | 1,92  | 48,88 | 1,02 | 26          |  |
| 3         | 78                   | 56                         | 2.02  | 74.20 | 1 50 | 38          |  |
| 3         | 53                   | 38                         | 2,92  | 74,28 | 1,50 | 30          |  |
| 4         | 110                  | 78                         | 2 02  | 00.49 | 1 77 | 45          |  |
| 4         | 74                   | 53                         | 3,92  | 99,68 | 1,77 | 43          |  |
| 6         | 245                  | 175                        | 5,84  | 148,4 | 2,52 | 64          |  |
| O         | 162                  | 116                        | 3,64  | 140,4 | 2,32 | 04          |  |
| 8         | 490                  | 350                        | 7,94  | 201,6 | 2,99 | 76          |  |
| 0         | 318                  | 227                        | 7,94  | 201,6 | 2,99 | 70          |  |
| 10        | <i>7</i> 1 <i>7</i>  | 512                        | 9,88  | 251   | 4 21 | 107         |  |
| 10        | 457                  | 326                        | 7,00  | 231   | 4,21 | 107         |  |
| 12        | 1265                 | 903                        | 11 00 | 201.0 | 5.00 | 127         |  |
| 12        | 776                  | 554                        | 11,88 | 301,8 | 5,00 | 12/         |  |
| 14        | 1754                 | 1253                       | 1201  | 251 4 | 5.00 | 152         |  |
| 14        | 1084                 | 774                        | 13,84 | 351,6 | 5,98 | 132         |  |
| 1.4       | 2372                 | 1694                       | 1504  | 402,4 | 4 07 | 1 <i>77</i> |  |
| 16        | 1458                 | 1041                       | 15,84 | 402,4 | 6,97 | 1//         |  |

T 8079 5

**Tabelle 6:** Durchflusskoeffizienten MULTICYL™

| Nenn- | Hu      | .L       |                      | Multi                | Cyl. 2-st | ufig     | Multi                | Cyl. 3-st | ufig       | Multi                | Cyl. 4-st | ufig | Multi                | Cyl. 5-st | ufig    |
|-------|---------|----------|----------------------|----------------------|-----------|----------|----------------------|-----------|------------|----------------------|-----------|------|----------------------|-----------|---------|
| weite | "       | JD       | Kennlinie 1)         | C <sub>v</sub> -Wert | Sitz      | z-Ø      | C <sub>v</sub> -Wert | Sitz      | z-Ø        | C <sub>v</sub> -Wert | Sitz      | z-Ø  | C <sub>v</sub> -Wert | Sitz      | z-Ø     |
| NPS   | in      | mm       | Kennine '            | Cy-weii              | in        | mm       |                      | in        | mm         | Cy-vveri             | in        | mm   | Cy-weii              | in        | mm      |
|       |         |          | lin                  | 43                   |           |          | 29                   |           |            | 19                   |           |      |                      |           |         |
|       |         |          | glp                  | 22                   |           |          | 15                   |           |            | 9                    |           |      |                      |           |         |
| 2     | 1,02    | 26       | mod. glp             | 26                   | 1,61      | 41       | 17                   | 1,73      | 44         | 11                   | 1,26      | 32   | -                    | -         | -       |
|       |         |          | mod. lin             | 35                   |           |          | 23                   |           |            | 15                   |           |      |                      |           |         |
|       |         |          | par.                 | 30                   |           |          | 20                   |           |            | 13                   |           |      |                      |           |         |
|       |         |          | lin                  | 43                   |           |          | 29                   |           |            | 19                   |           |      |                      |           |         |
|       |         |          | glp                  | 22                   |           |          | 15                   |           |            | 9                    |           |      |                      |           |         |
|       | 1,02    | 26       | mod. glp             | 26                   | 1,61      | 41       | 17                   | 1,73      | 44         | 11                   | 1,26      | 32   | -                    | -         | _       |
|       |         |          | mod. lin             | 35                   |           |          | 23                   |           |            | 15                   |           |      |                      |           |         |
| 3     |         |          | par.                 | 30                   |           |          | 20                   |           |            | 13                   |           |      |                      |           |         |
|       |         |          | lin                  | 87                   |           |          | 60                   |           |            | 38                   |           |      | 24                   |           |         |
|       |         |          | glp                  | 44                   |           |          | 30                   |           |            | 19                   |           |      | 12                   |           |         |
|       | 1,50    | 38       | mod. glp             | 52                   | 2,52      | 64       | 36                   | 2,01      | 51         | 23                   | 1,61      | 41   | 14                   | 1,26      | 32      |
|       |         |          | mod. lin             | 70                   |           |          | 49                   |           |            | 31                   |           |      | 19                   |           |         |
|       |         |          | par.                 | 61                   |           |          | 42                   |           |            | 27                   |           |      | 17                   |           |         |
|       |         |          | lin                  | 87                   |           |          | 60                   |           |            | 38                   |           |      | 24                   |           |         |
|       |         |          | glp                  | 44                   |           |          | 30                   |           |            | 19                   |           |      | 12                   |           |         |
|       | 1,50    | 38       | mod. glp             | 52                   | 2,52      | 64       | 36                   | 2,01      | 51         | 23                   | 1,61      | 41   | 14                   | 1,26      | 32      |
|       |         |          | mod. lin             | 70                   |           |          | 49                   |           |            | 31                   |           |      | 19                   |           |         |
| 4     |         |          | par.                 | 61                   |           |          | 42                   |           |            | 27                   |           |      | 17                   |           |         |
|       |         |          | lin                  | 147                  |           |          | 104                  |           |            | 66                   |           |      | 43                   |           |         |
|       | 0.00    | 50       | glp                  | 74                   | 0.50      | 00       | 52                   | 0.00      | <b>-</b> , | 33                   | 0 ( )     | , -  | 22                   | 0.04      |         |
|       | 2,09 53 | mod. glp | 88                   | 3,50                 | 89        | 62       | 2,99                 | 76        | 40         | 2,64                 | 67        | 26   | 2,24                 | 57        |         |
|       |         |          | mod. lin             | 119                  |           |          | 84                   |           |            | 53                   |           |      | 35                   |           |         |
|       |         |          | par.                 | 103                  |           |          | 73                   |           |            | 46                   |           |      | 30                   |           |         |
|       |         |          | lin                  | 147                  |           |          | 104                  | -         |            | 66                   |           |      | 43                   |           |         |
|       | 0.40    | 40       | glp                  | 74                   | 3,50      | 89       | 52                   | 2,99      | 9 76       | 33                   | 2,64      | 67   | 22                   | 0.04      |         |
|       | 2,48    | 63       | mod. glp             | 88                   |           |          | 62                   |           |            | 40                   | 2,64      |      | 26                   | 2,24      | 57      |
|       |         |          | mod. lin             | 119                  |           |          | 73                   |           |            | 53<br>46             |           |      | 35<br>30             |           |         |
| 6     |         |          | par.                 | 103                  |           |          | 201                  |           |            |                      |           |      |                      |           |         |
|       |         |          | lin                  | 283<br>142           |           |          |                      |           |            | 127                  |           |      | 83<br>42             |           |         |
|       | 2.05    | 75       | glp                  |                      | 4.40      | 114      | 101                  | 4.00      | 100        | 64<br>76             | 2.50      | 00   | 50                   | 2.00      | 7/      |
|       | 2,95    | 75       | mod. glp<br>mod. lin | 170<br>229           | 4,49      | 114      | 121<br>163           | 4,02      | 102        | 103                  | 3,50      | 89   | 67                   | 2,99      | 76      |
|       |         |          |                      | 198                  |           |          | 141                  |           |            | 89                   |           |      | 58                   |           |         |
|       |         |          | par.<br>lin          | 283                  |           |          | 201                  |           |            | 127                  |           |      | 83                   |           |         |
|       |         |          |                      | 142                  |           |          | 101                  |           |            | 64                   |           |      | 42                   |           |         |
|       | 2,95    | 75       | glp<br>mod. glp      | 170                  | 4,49      | 114      | 121                  | 4,02      | 102        | 76                   | 3,50      | 89   | 50                   | 2,99      | 76      |
|       | 2,73    | /3       | mod. lin             | 229                  | 4,47      | 114      | 163                  | 4,02      | 102        | 103                  | 3,30      | 07   | 67                   | 2,77      | / 0     |
|       |         |          | par.                 | 198                  |           |          | 141                  |           |            | 89                   |           |      | 58                   |           |         |
| 8     |         |          | lin                  | 465                  |           |          | 330                  |           |            | 210                  |           |      | 135                  |           |         |
|       |         |          | glp                  | 233                  |           |          | 165                  |           |            | 105                  |           |      | 68                   |           |         |
|       | 3,62    | 92       | mod. glp             | 279                  | 5,98      | 152      | 198                  | 5,00      | 127        | 126                  | 4,49      | 114  | 81                   | 4,02      | 102     |
|       | 3,02    | 12       | mod. lin             | 377                  | 3,70      | 132      | 267                  | 3,00      | 12/        | 170                  | 4,47      | 114  | 109                  | 4,02      | 102     |
|       |         |          | par.                 | 326                  |           |          | 231                  |           |            | 147                  |           |      | 95                   |           |         |
|       |         |          | lin                  | 465                  |           |          | 330                  |           |            | 210                  |           |      | 135                  |           |         |
|       |         |          | glp                  | 233                  |           |          | 165                  |           |            | 105                  |           |      | 68                   |           |         |
|       | 3,62    | 92       | mod. glp             | 279                  | 5,98      | 152      | 198                  | 5,00      | 127        | 126                  | 4,49      | 114  | 81                   | 4,02      | 102     |
|       | 3,02    | 12       | mod. lin             | 377                  | 3,70      | 132      | 267                  | 3,00      | 12/        | 170                  | 4,47      | 114  | 109                  | 4,02      | 102     |
|       |         |          | par.                 | 326                  |           |          | 231                  |           |            | 147                  |           |      | 95                   |           |         |
| 10    |         |          | lin                  | 788                  |           |          | 559                  |           |            | 354                  |           |      | 229                  |           |         |
|       |         |          | glp                  | 394                  |           |          | 280                  |           |            | 177                  |           |      | 115                  |           |         |
|       | 5,00    | 127      | mod. glp             | 473                  | 7 99      | 203      |                      | 7.01      | 178        | 212                  | 5,98      | 152  |                      | 5 00      | 127     |
|       | 5,00    |          | mod. lin             | 638                  | 7,99      | 203      | 335                  |           | 7,01   178 | 287                  | 5,70      | .02  | 52 137 5,00<br>185   | 0,00      | 0   12/ |
|       |         |          | par.                 | 552                  |           |          | 391                  |           |            | 248                  |           |      | 160                  |           |         |
|       |         |          | 1 Pai.               | J J J Z              | <u> </u>  | <u> </u> | 1 3/1                |           |            |                      | l         |      | 100                  |           |         |

| Nenn- | Нс   | .L                           |              | Multi                | Cyl. 2-st | ufig | Multi (              | Cyl. 3-st | ufig         | Multi                | Cyl. 4-st | ufig         | Multi                | Cyl. 5-st | ufig |
|-------|------|------------------------------|--------------|----------------------|-----------|------|----------------------|-----------|--------------|----------------------|-----------|--------------|----------------------|-----------|------|
| weite | HU   | מנ                           | Kennlinie 1) | C <sub>v</sub> -Wert | Sitz      | z-Ø  | C <sub>v</sub> -Wert | Sitz      | z-Ø          | C <sub>v</sub> -Wert | Sitz      | z-Ø          | C <sub>v</sub> -Wert | Sitz      | z-Ø  |
| NPS   | in   | mm                           | Kenniinie "  | C <sub>V</sub> -werr | in        | mm   | C <sub>V</sub> -werr | in        | mm           | C <sub>V</sub> -werr | in        | mm           | C <sub>V</sub> -werr | in        | mm   |
|       |      |                              | lin          | 788                  |           |      | 559                  |           |              | 354                  |           |              | 229                  |           |      |
|       |      |                              | glp          | 394                  |           |      | 280                  |           |              | 177                  |           |              | 115                  |           |      |
|       | 5,00 | 127                          | mod. glp     | 473                  | 7,99      | 203  | 335                  | 7,01      | 1 <i>7</i> 8 | 212                  | 5,98      | 152          | 137                  | 5,00      | 127  |
|       |      |                              | mod. lin     | 638                  |           |      | 453                  |           |              | 287                  |           |              | 185                  |           |      |
| 12    |      |                              | par.         | 552                  |           |      | 391                  |           |              | 248                  |           |              | 160                  |           |      |
| 12    |      |                              | lin          | 1050                 |           |      | 745                  |           |              | 470                  |           |              | 305                  |           |      |
|       |      |                              | glp          | 525                  |           |      | 373                  |           |              | 235                  |           |              | 153                  |           |      |
|       | 5,47 | 139                          | mod. glp     | 630                  | 9,02      | 229  | 447                  | 7,99      | 203          | 282                  | 7,01      | 1 <i>7</i> 8 | 183                  | 5,98      | 152  |
|       |      |                              | mod. lin     | 851                  |           |      | 603                  |           |              | 381                  |           |              | 247                  |           |      |
|       |      |                              | par.         | 735                  |           |      | 522                  |           |              | 329                  |           |              | 214                  |           |      |
|       |      |                              | lin          | 1050                 |           |      | 745                  |           |              | 470                  |           |              | 305                  |           |      |
|       |      |                              | glp          | 525                  |           |      | 373                  |           |              | 235                  |           |              | 153                  |           |      |
|       | 5,47 | mod. glp<br>mod. lin<br>par. |              | 630                  | 9,02      | 229  | 447                  | 7,99      | 203          | 282                  | 7,01      | 178          | 183                  | 5,98      | 152  |
|       |      |                              | mod. lin     | 851                  |           |      | 603                  |           |              | 381                  |           |              | 247                  |           |      |
| 14    |      |                              | par.         | 735                  |           |      | 522                  |           |              | 329                  |           |              | 214                  |           |      |
| 14    |      |                              | lin          | 1540                 |           |      | 1105                 |           |              | 692                  |           |              | 450                  |           |      |
|       |      |                              | glp          | 770                  |           |      | 503                  |           |              | 346                  |           |              | 225                  |           |      |
|       | 6,85 | 174                          | mod. glp     | 924                  | 10,00     | 254  | 603                  | 9,02      | 229          | 415                  | 7,99      | 203          | 270                  | 7,01      | 178  |
|       |      |                              | mod. lin     | 1247                 |           |      | 814                  |           |              | 561                  |           |              | 365                  |           |      |
|       |      |                              | par.         | 1078                 |           |      | 704                  |           |              | 484                  |           |              | 315                  |           |      |
|       |      |                              | lin          | 1540                 |           |      | 1105                 |           |              | 692                  |           |              | 450                  |           |      |
|       |      |                              | glp          | 770                  |           |      | 503                  |           |              | 346                  |           |              | 225                  |           |      |
|       | 6,85 | 174                          | mod. glp     | 924                  | 10,00     | 254  | 603                  | 9,02      | 229          | 415                  | 7,99      | 203          | 270                  | 7,01      | 178  |
|       |      |                              | mod. lin     | 1247                 |           |      | 814                  |           |              | 561                  |           |              | 365                  |           |      |
| 16    |      |                              | par.         | 1078                 |           |      | 704                  |           |              | 484                  |           |              | 315                  |           |      |
|       |      |                              | lin          | 1805                 |           |      | 1325                 |           |              | 834                  |           |              | 543                  |           |      |
|       |      |                              | glp          | 903                  |           |      | 663                  |           |              | 417                  |           |              | 272                  |           |      |
|       | 7,28 | 185                          | mod. glp     | 1083                 | 12,01     | 305  | 795                  | 10,00     | 254          | 500                  | 9,02      | 229          | 326                  | 7,99 2    | 203  |
|       | ,,20 |                              | mod. lin     | 1462                 | ,         |      | 1073                 |           |              | 676                  |           |              | 440                  |           |      |
|       |      | par.                         | 1264         |                      |           | 928  |                      |           | 584          |                      |           | 380          |                      |           |      |

## 1) Kennlinienform:

lin linear

glp gleichprozentig

mod. glp modifiziert gleichprozentig

mod. lin modifiziert linear par. parabelförmig

## Tabelle 7: Gewichte

Die angegebenen Gewichte entsprechen einer spezifischen Standardvariante des Geräts. Gewichte fertig konfigurierter Geräte können je nach Ausführung (Werkstoff, Garniturausführung usw.) abweichen.

| '          | 0 1     | ,    |    |      | U   | •   |        |          |      |      |      |      |      |
|------------|---------|------|----|------|-----|-----|--------|----------|------|------|------|------|------|
|            |         |      |    |      |     |     | Nennwe | eite NPS |      |      |      |      |      |
| Nenndruck  | Gewicht | 3/4  | 1  | 11/2 | 2   | 3   | 4      | 6        | 8    | 10   | 12   | 14   | 16   |
| Class 150  | ca. kg  | a.A. | 17 | 28   | 28  | 55  | 96     | 161      | 242  | 589  | 785  | 1268 | 1449 |
| Class 300  | ca. kg  | a.A. | 20 | 28   | 30  | 62  | 105    | 188      | 265  | 627  | 801  | 1345 | 1552 |
| Class 600  | ca. kg  | a.A. | 20 | 28   | 32  | 64  | 115    | 213      | 333  | 806  | 1072 | 1463 | 1830 |
| Class 900  | ca. kg  | a.A. | 34 | 53   | 78  | 127 | 176    | 335      | 615  | 892  | 1585 | 2096 | 3461 |
| Class 1500 | ca. kg  | a.A. | 34 | 53   | 78  | 140 | 193    | 485      | 875  | 1677 | 2241 | 3289 | 5072 |
| Class 2500 | ca. kg  | a.A. | 59 | 108  | 114 | 206 | 311    | 827      | 1607 | 2914 | 4403 | a.A. | a.A. |

T 8079 7

Tabelle 8.1: Gehäuse mit Anschweißenden oder Vorschuhenden · NPS 3/4 bis 4

|                          |                      |    | Nennweite NPS |       |       |       |       |       |  |  |  |  |  |
|--------------------------|----------------------|----|---------------|-------|-------|-------|-------|-------|--|--|--|--|--|
| МаВ                      | Nenndruck            |    | 3/4           | 1     | 11/2  | 2     | 3     | 4     |  |  |  |  |  |
|                          | Class 150 bis 600    | in | 7,36          | 7,36  | 8,74  | 10,00 | 12,52 | 14,49 |  |  |  |  |  |
|                          | Class 150 bis 600    | mm | 187           | 187   | 222   | 254   | 318   | 368   |  |  |  |  |  |
|                          | Class 900 und 1500 - | in | 7,64          | 7,76  | 9,25  | 11,50 | 12,52 | 14,49 |  |  |  |  |  |
| Länge L                  | Class 900 una 1500 - | mm | 194           | 197   | 235   | 292   | 318   | 368   |  |  |  |  |  |
|                          | Class 2500           | in | 8,50          | 8,50  | 10,24 | 12,52 | 15,00 | 15,98 |  |  |  |  |  |
|                          | Class 2000           | mm | 216           | 216   | 260   | 318   | 381   | 406   |  |  |  |  |  |
|                          | Cl 150 kt. /00       | in | a.A.          | 1,69  | 3,15  | 2,52  | 3,15  | 5,71  |  |  |  |  |  |
|                          | Class 150 bis 600 -  | mm | a.A.          | 43    | 80    | 64    | 80    | 145   |  |  |  |  |  |
| Höhe H2                  | Class 900 bis 1500   | in | a.A.          | 2,68  | 3,35  | 3,58  | 4,84  | 5,94  |  |  |  |  |  |
| Hone HZ                  |                      | mm | a.A.          | 68    | 85    | 91    | 123   | 151   |  |  |  |  |  |
|                          | Class 2500           | in | a.A.          | 2,8   | a.A   | 3,86  | a.A   | 6,26  |  |  |  |  |  |
|                          | Class 2000           | mm | a.A.          | 71    | a.A   | 98    | a.A   | 159   |  |  |  |  |  |
|                          | Class 150 bis 600    | in | 7,6           | 7,6   | 7,76  | 8,54  | 10,91 | 12,76 |  |  |  |  |  |
|                          | Class 150 bis 600    | mm | 193           | 193   | 197   | 217   | 277   | 324   |  |  |  |  |  |
| 1191.114                 | Cl 000 kt. 1500      | in | 8,66          | 8,66  | 9,49  | 9,96  | 12,13 | 12,32 |  |  |  |  |  |
| Höhe H4                  | Class 900 bis 1500 - | mm | 220           | 220   | 241   | 253   | 308   | 313   |  |  |  |  |  |
|                          | Class 2500           | in | 10,04         | 10,04 | 10,83 | 11,54 | 12,87 | 14,53 |  |  |  |  |  |
|                          | Class 2000           | mm | 255           | 255   | 275   | 293   | 327   | 369   |  |  |  |  |  |
| Höhe H3 bei An-          | Class 150 bis 2500 - | in | 3,94          | 3,94  | 3,94  | 3,94  | 4,92  | 5,91  |  |  |  |  |  |
| trieb 3276 <sup>1)</sup> | Class 100 bis 2000   | mm | 100           | 100   | 100   | 100   | 125   | 150   |  |  |  |  |  |
| Höhe H8 <sup>2)</sup>    | Class 150 bis 2500   | in | a.A.          | a.A.  | a.A.  | a.A.  | a.A.  | a.A.  |  |  |  |  |  |
| none no *                | Class 100 bis 2000 - | mm | a.A.          | a.A.  | a.A.  | a.A.  | a.A.  | a.A.  |  |  |  |  |  |

H3 bei Antrieb Typ 3271 vgl. Tabelle 10
 Nur bei Antrieb Typ 3271

 Tabelle 8.2: Gehäuse mit Anschweißenden oder Vorschuhenden · NPS 6 bis 16

|         |                      |    |       |       | Nennwe | eite NPS |       |       |
|---------|----------------------|----|-------|-------|--------|----------|-------|-------|
| Мав     | Nenndruck            |    | 6     | 8     | 10     | 12       | 14    | 16    |
|         | Class 150 bis 600 -  | in | 20    | 21,38 | 29,61  | 32,24    | 33,5  | 43,62 |
|         | Class 130 bis 600    | mm | 508   | 543   | 752    | 819      | 851   | 1108  |
| Länge L | Class 900 und 1500 - | in | 20,00 | 24,02 | 30,00  | 35,98    | 49,49 | 55,98 |
|         | Class 900 und 1500 - | mm | 508   | 610   | 762    | 914      | 1257  | 1422  |
|         | Cl 2500              | in | 24,02 | 30,00 | 40,00  | 44,02    | a.A.  | a.A.  |
|         | Class 2500 -         | mm | 610   | 762   | 1016   | 1118     | a.A.  | a.A.  |
|         | Class 150 bis 300 -  | in | 5,63  | 6,61  | 12,4   | 13,78    | 16,42 | 18,5  |
|         | Class 130 bis 300 -  | mm | 143   | 168   | 315    | 350      | 417   | 470   |
|         | Cl                   | in | 5,55  | 6,89  | 12,8   | 14,37    | 16,69 | 15,75 |
|         | Class 600            | mm | 141   | 175   | 325    | 365      | 424   | 400   |
| Höhe H2 | Class 900 -          | in | 8,15  | 10,24 | 13,5   | 15,55    | 17,13 | a.A.  |
| Hone HZ | Class 900            | mm | 207   | 260   | 343    | 395      | 435   | a.A.  |
|         | Class 1500 -         | in | 8,94  | 11,26 | 13,62  | 15,31    | 18,11 | 21,34 |
|         | Class 1500           | mm | 227   | 286   | 346    | 389      | 460   | 542   |
|         | Class 2500 -         | in | 9,45  | a.A.  | a.A.   | a.A.     | a.A.  | a.A.  |
|         | Ciass 2000           | mm | 240   | a.A.  | a.A.   | a.A.     | a.A.  | a.A.  |

|                       |                    |    | Nennweite NPS |               |       |             |       |       |  |  |  |  |
|-----------------------|--------------------|----|---------------|---------------|-------|-------------|-------|-------|--|--|--|--|
| Maß                   | Nenndruck          |    | 6             | 8             | 10    | 12          | 14    | 16    |  |  |  |  |
|                       | Class 150 bis 300  | in | 15,35         | 17,64         | 21,02 | 22,87       | 25,2  | 27,09 |  |  |  |  |
|                       | Class 130 bis 300  | mm | 390           | 448           | 534   | 581         | 640   | 688   |  |  |  |  |
|                       | Cl 400             | in | 15,24         | 17,28         | 22,48 | 23,62       | 25,2  | 26,89 |  |  |  |  |
|                       | Class 600          | mm | 387           | 439           | 571   | 600         | 640   | 683   |  |  |  |  |
| Höhe H4               | Cl 000             | in | 14,53         | 16,65         | 24,13 | 24,25       | 23,23 | 26,38 |  |  |  |  |
| none n4               | Class 900          | mm | 369           | 423           | 613   | 616         | 590   | 670   |  |  |  |  |
|                       | Class 1500         | in | 16,57         | 1 <i>7,</i> 8 | 24,13 | 22,72       | 25,71 | 29,53 |  |  |  |  |
|                       | Class 1500         | mm | 421           | 452           | 613   | 577         | 653   | 750   |  |  |  |  |
|                       | Class 2500         | in | 17,28         | 21,26         | 26,89 | 30,35       | 34,72 | 39,02 |  |  |  |  |
|                       | Class 2500         | mm | 439           | 540           | 683   | <i>7</i> 71 | 882   | 991   |  |  |  |  |
| Höhe H3 bei An-       | Class 150 bis 2500 | in | 7,87          | 9,84          | 13,78 | 15,75       | 17,72 | 19,69 |  |  |  |  |
| trieb 3276 1)         | Class 150 bis 2500 | mm | 200           | 250           | 350   | 400         | 450   | 500   |  |  |  |  |
| Höhe H8 <sup>2)</sup> | Class 150 bis 2500 | in | a.A.          | a.A.          | a.A.  | a.A.        | a.A.  | a.A.  |  |  |  |  |
| Hone Ho               | Class 150 bis 2500 | mm | a.A.          | a.A.          | a.A.  | a.A.        | a.A.  | a.A.  |  |  |  |  |

H3 bei Antrieb Typ 3271 vgl. Tabelle 10Nur bei Antrieb Typ 3271

**Tabelle 8.3:** Gehäuse in Flanschausführung · NPS ¾ bis 4

|                             |                      |    | Nennweite NPS |       |       |       |       |       |       |       |       |       |       |       |
|-----------------------------|----------------------|----|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                             |                      |    | 3,            | 4     | '     | 1     | 1     | 1/2   | :     | 2     | ;     | 3     | 4     | 4     |
|                             |                      |    | Flansch       | nform | '     |       | '     |       | '     |       | '     |       | '     |       |
| МаВ                         | Nenndruck            |    | RF            | RTJ   | RF    | RTJ   | RF    | RTJ   | RF    | RTJ   | RF    | RTJ   | RF    | RTJ   |
|                             | Class 150 -          | in | 7,24          | -     | 7,24  | -     | 8,74  | -     | 10,00 | -     | 11,73 | -     | 13,86 | -     |
|                             | Class 150            | mm | 184           | -     | 184   | -     | 222   | -     | 254   | -     | 298   | -     | 352   | -     |
|                             | Class 300            | in | 7,64          | _     | 7,76  | -     | 9,25  | _     | 10,51 | -     | 12,52 | _     | 14,49 | -     |
|                             | Class 300            | mm | 194           | _     | 197   | -     | 235   | _     | 267   | -     | 318   | -     | 368   | _     |
|                             | Class 600            | in | 8,11          | 8,11  | 8,27  | 8,27  | 9,88  | 9,88  | 11,26 | 11,38 | 13,27 | 13,39 | 15,51 | 15,63 |
| Länge L                     | Class 600            | mm | 206           | 206   | 210   | 210   | 251   | 251   | 286   | 289   | 337   | 340   | 394   | 397   |
| Lange L                     | Class 900            | in | 10,75         | 10,75 | 10,75 | 10,75 | 13,11 | 13,11 | 13,39 | 13,5  | 17,36 | 17,48 | 18,27 | 18,39 |
|                             |                      | mm | 273           | 273   | 273   | 273   | 333   | 333   | 340   | 343   | 441   | 444   | 464   | 467   |
|                             | Class 1500           | in | 10,75         | 10,75 | 10,75 | 10,75 | 13,11 | 13,11 | 13,39 | 13,5  | 18,11 | 18,23 | 19,02 | 19,13 |
|                             | Class 1500           | mm | 273           | 273   | 273   | 273   | 333   | 333   | 340   | 343   | 460   | 463   | 483   | 486   |
|                             | Class 2500           | in | 12,13         | 12,13 | 12,52 | 12,52 | 14,13 | 14,25 | 15,75 | 15,87 | 19,61 | 19,84 | 22,64 | 23,03 |
|                             | Class 2500           | mm | 308           | 308   | 318   | 318   | 359   | 362   | 400   | 403   | 498   | 504   | 575   | 585   |
|                             | Class 150 bis 600 —  | in | a.            | Α.    | 1,    | 69    | 3,15  |       | 2,    | 52    | 3,    | 15    | 5,    | 71    |
|                             |                      | mm | a.A.          |       | 43    |       | 8     | 0     | 6     | 4     | 8     | 0     | 14    | 45    |
| Höhe H2                     | Class 900 bis 1500   | in | a.A.          |       | 2,68  |       | 3,35  |       | 3,58  |       | 4,84  |       | 5,    | 94    |
| TIONE TIZ                   |                      | mm | a.A.          |       | 6     | 68 85 |       | 5     | 9     | 1     | 123   |       | 13    | 51    |
|                             | Class 2500 -         | in | a.A.          |       | 2     | ,8    | a.    | Α     | 3,86  |       | a.A   |       | 6,26  |       |
|                             |                      | mm | a.A.          |       | 71    |       | a.A   |       | 98    |       | a.A   |       | 159   |       |
|                             | Class 150 bis 600    | in | · ·           |       | 7,6   |       | 7,76  |       | 8,54  |       | 10,91 |       | 12,76 |       |
| Höhe H4                     |                      | mm | 193           |       | 193   |       | 197   |       | 217   |       | 277   |       | 324   |       |
|                             | Class 900 bis 1500   | in | 8,66          |       | 8,66  |       | 9,49  |       | 9,96  |       | 12,13 |       | 12,32 |       |
|                             |                      | mm |               | 20    | 220   |       | 241   |       | 253   |       | 308   |       | 313   |       |
|                             | Class 2500 -         | in | 10,04         |       | 10,04 |       | 10,83 |       | 11,54 |       | 12,87 |       | 14,53 |       |
| Höhe H3 bei Antrieb 3276 1) |                      | mm | 255           |       | 255   |       | 275   |       | 293   |       | 327   |       | 369   |       |
|                             | Class 150 bis 2500 - | in | 3,94          |       | 3,94  |       | 3,94  |       | 3,94  |       | 4,92  |       | 5,91  |       |
|                             |                      | mm |               | 00    | 100   |       | 100   |       | 100   |       | 125   |       | 150   |       |
| Höhe H8 <sup>2)</sup>       | Class 150 bis 2500   | in | a.A.          |       | a.A.  |       | a.A.  |       | a.A.  |       | a.A.  |       | a.A.  |       |
| TIONE FIG.                  |                      | mm | a.A.          |       | a.A.  |       | a.A.  |       | a.A.  |       | a.A.  |       | a.    | Α.    |

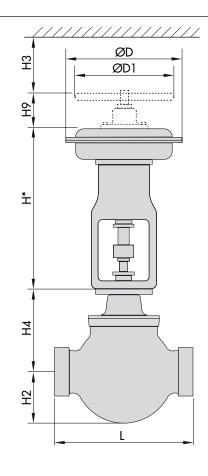
H3 bei Antrieb Typ 3271 vgl. Tabelle 10Nur bei Antrieb Typ 3271

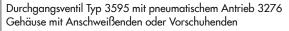
**Tabelle 8.4:** Gehäuse in Flanschausführung · NPS 6 bis 16

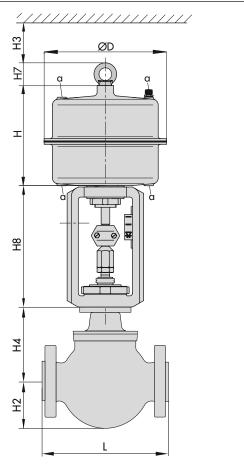
|                       |                    |          | Nennweite NPS |        |       |           |              |       |              |       |             |       |       |       |
|-----------------------|--------------------|----------|---------------|--------|-------|-----------|--------------|-------|--------------|-------|-------------|-------|-------|-------|
|                       |                    |          |               | 5      | 8     | 8         | 1            | 0     | 1            | 2     | 1           | 4     | 1     | 6     |
|                       |                    |          | Flanschform   |        | l     |           | l            |       | 1            |       | 1           |       |       |       |
| Maß                   | Nenndruck          |          | RF            | RTJ    | RF    | RTJ       | RF           | RTJ   | RF           | RTJ   | RF          | RTJ   | RF    | RTJ   |
|                       | Cl 150             | in       | 17,76         | -      | 21,38 | -         | 26,50        | _     | 29,02        | -     | 35,00       | -     | 40,00 | -     |
|                       | Class 150          | mm       | 451           | -      | 543   | -         | 673          | -     | 737          | -     | 889         | -     | 1016  | -     |
|                       | cl ooo             | in       | 18,62         | -      | 22,36 | -         | 27,87        | _     | 30,51        | -     | 36,50       | -     | 41,61 | _     |
|                       | Class 300          | mm       | 473           | -      | 568   | -         | 708          | -     | 775          | -     | 927         | -     | 1057  | -     |
|                       | Cl. (00            | in       | 20,00         | 20,12  | 24,02 | 24,13     | 29,61        | 29,72 | 32,24        | 32,36 | 38,27       | 38,39 | 43,62 | 43,74 |
|                       | Class 600          | mm       | 508           | 511    | 610   | 613       | 752          | 755   | 819          | 822   | 972         | 975   | 1108  | 1111  |
| Länge L               | cl ooo             | in       | 23,62         | 23,74  | 30,75 | 30,87     | 34,02        | 34,13 | 40,00        | 40,12 | 49,49       | 49,88 | 55,98 | 56,38 |
|                       | Class 900          | mm       | 600           | 603    | 781   | 784       | 864          | 867   | 1016         | 1019  | 1257        | 1267  | 1422  | 1432  |
|                       | Cl 1500            | in       | 27,24         | 27,48  | 32,99 | 33,39     | 39,02        | 39,41 | 44,49        | 45,12 | 49,49       | 50,24 | 55,98 | 56,85 |
|                       | Class 1500         | mm       | 692           | 698    | 838   | 848       | 991          | 1001  | 1130         | 1146  | 1257        | 1276  | 1422  | 1444  |
|                       | Cl. 0500           | in       | 32,24         | 32,76  | 40,24 | 40,87     | 50,00        | 50,87 | 52,01        | 52,87 | a.A.        | a.A.  | a.A.  | a.A.  |
|                       | Class 2500         | mm       | 819           | 832    | 1022  | 1038      | 1270         | 1292  | 1321         | 1343  | a.A.        | a.A.  | a.A.  | a.A.  |
|                       | Class 150 bis 300  | in       | 5,63          |        | 6,    | 61        | 12,4         |       | 13,78        |       | 16,42       |       | 18,5  |       |
|                       |                    | mm       | 143           |        | 10    | 168 31    |              | 15    | 350          |       | 417         |       | 470   |       |
| Höhe H2               | Class 600          | in       | 5,55          |        | 6,    | 89        | 12           | 2,8   | 14,37        |       | 16,69       |       | 15    | ,75   |
|                       |                    | mm       | 141           |        | 175   |           | 325          |       | 365          |       | 424         |       | 400   |       |
|                       | Class 900          | in       | 8,15          |        | 10    | ,24       | 13           | 3,5   | 15           | ,55   | 17          | ,13   | a.    | Α.    |
| 110110112             |                    | mm       | 207           |        | 20    | 60        | 34           | 43    | 39           | 95    | 43          | 35    | a.    | Α.    |
|                       | Class 1500         | in       | 8,94          |        |       | ,26       | 13           | ,62   |              | ,31   |             | ,11   |       | ,34   |
|                       |                    | mm       | 227           |        |       | 36        |              | 46    |              | 39    |             | 50    |       | 42    |
|                       | Class 2500         | in       | · ·           |        |       | <u>A.</u> |              | A     | a.A.         |       | a.A.        |       | a.A.  |       |
|                       |                    | mm       |               |        | a.A.  |           | a.A.         |       | a.A.         |       | a.A.        |       | a.A.  |       |
|                       | Class 150 bis 300  | in       | 200           |        | 17,64 |           | 21,02        |       | 22,87        |       | 25,2        |       | 27,09 |       |
|                       |                    | mm<br>:  | 390           |        | 17,28 |           | 534<br>22,48 |       | 581          |       | 640         |       | 688   |       |
|                       | Class 600          | in       | 15,24<br>387  |        | 439   |           | 571          |       | 23,62<br>600 |       | 25,2<br>640 |       | 26,89 |       |
|                       |                    | mm<br>in | -             |        | 16,65 |           | 24,13        |       | 24,25        |       | 23,23       |       | 26,38 |       |
| Höhe H4               | Class 900          | mm       | 0.40          |        | 423   |           | 613          |       | 616          |       | 590         |       | 670   |       |
|                       |                    | in       | +             |        | 17,8  |           | 24,13        |       | 22,72        |       | 25,71       |       | 29,53 |       |
|                       | Class 1500         | mm       |               | 21     | 452   |           | 613          |       | 577          |       | 653         |       | 750   |       |
|                       |                    | in       |               | ,28    |       | ,26       | 26,89        |       | 30,35        |       |             | ,72   | 39,02 |       |
|                       | Class 2500         | mm       |               | <br>39 | 540   |           | 683          |       | 771          |       | 882         |       | 991   |       |
| Höhe H3 bei An-       | Cl 1501: 0500      | in       | 7,            | 87     | 9,84  |           | 13,78        |       | 15,75        |       | 17,72       |       | 19,69 |       |
| trieb 3276 1)         | Class 150 bis 2500 | mm       | 20            | 00     | 250   |           | 350          |       | 400          |       | 450         |       | 50    | 00    |
| Höhe H8 <sup>2)</sup> | Clare 150 Lin 2500 | in       | a.            | A.     | a.A.  |           | a.A.         |       | a.A.         |       | a.A.        |       | a.A.  |       |
| none no -             | Class 150 bis 2500 | mm       | a.            | A.     | a.    | A.        | a.           | A.    | a.           | A.    | a.          | A.    | a.    | A.    |

H3 bei Antrieb Typ 3271 vgl. Tabelle 10Nur bei Antrieb Typ 3271

**Tabelle 9:** Maße für pneumatischen Antrieb 3276


|                                          |                                        |    | Ausführung (wirksame Membranfläche) |               |                |                |  |  |  |  |
|------------------------------------------|----------------------------------------|----|-------------------------------------|---------------|----------------|----------------|--|--|--|--|
| Maß                                      |                                        |    | 330 (387 cm <sup>2</sup> )          | 350 (645 cm²) | 380 (1032 cm²) | 390 (1032 cm²) |  |  |  |  |
| Höhe H*                                  | Wirkrichtung FA                        | in | 17,09                               | 27,17         | 27,91          | 34,02          |  |  |  |  |
|                                          | wirkrichtung FA                        | mm | 434                                 | 690           | 709            | 864            |  |  |  |  |
|                                          | Wirkrichtung FE                        | in | 17,6                                | 27,76         | 31,85          | 36,65          |  |  |  |  |
|                                          | wirkrichtung FE                        | mm | 447                                 | 705           | 809            | 931            |  |  |  |  |
| ØD                                       |                                        | in | 11,50                               | 15,12         | 17,99          | 17,99          |  |  |  |  |
|                                          |                                        | mm | 292                                 | 384           | 457            | 457            |  |  |  |  |
| ØD1                                      |                                        | in | 9,84                                | 19,69         | 19,69          | 19,69          |  |  |  |  |
| ØD1                                      |                                        | mm | 250                                 | 500           | 500            | 500            |  |  |  |  |
| \\r\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |                                        | in | 6,65                                | 11,14         | 11,14          | 15,83          |  |  |  |  |
| 115 - 110                                | Wirkrichtung FA                        | mm | 169                                 | 283           | 283            | 402            |  |  |  |  |
| Höhe H9                                  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | in | 9,09                                | 15,28         | 15,94          | 22,4           |  |  |  |  |
|                                          | Wirkrichtung FE                        | mm | 231                                 | 388           | 405            | 569            |  |  |  |  |
| 11.1                                     |                                        | in | 1,02                                | 2,01          | 2,99           | 5,00           |  |  |  |  |
| max. Hub                                 |                                        | mm | 26                                  | 51            | 76             | 127            |  |  |  |  |


**Tabelle 10:** Maße für pneumatischen Antrieb Typ 3271


| Antriebsfläche        | cm <sup>2</sup> | 1000        | 1400-60     | 1400-120    | 1400-250    | 2800        | 2 x 2800    |
|-----------------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Mandana OD            | in              | 18,19       | 20,87       | 21,02       | 21,02       | 30,32       | 30,32       |
| Membran-ØD ——         | mm              | 462         | 530         | 534         | 534         | 770         | 770         |
| Höhe H                | in              | 12,32       | 9,72        | 18,5        | 31,5        | 23,03       | 42,72       |
| Hone H                | mm              | 313         | 247         | 470         | 800         | 585         | 1085        |
| Höhe H3 1)            | in              | 24,02       | 24,02       | 25,59       | a.A.        | 25,59       | 25,59       |
| Hone H3 "             | mm              | 610         | 610         | 650         | a.A.        | 650         | 650         |
| Höhe H7 <sup>2)</sup> | in              | 3,54        | 3,54        | 5,04        | 4,33        | 5,04        | 5,04        |
| Hone H/ -/            | mm              | 90          | 90          | 128         | 110         | 128         | 128         |
| Gewinde               |                 | M60 x 1,5   |             | M100 x 2    |             |             |             |
| а                     |                 | G ¾ (¾ NPT) | G ¾ (¾ NPT) | G 1 (1 NPT) |

<sup>1)</sup> Minimaler freier Abstand für Ausbau des Antriebs

<sup>&</sup>lt;sup>2)</sup> Höhe der Ringschraube nach DIN 580. Höhe des Anschlagwirbels kann abweichen.







Durchgangsventil Typ 3595 mit pneumatischem Antrieb Typ 3271 Ausführung mit Flanschgehäuse

| Bestel | ltext |
|--------|-------|

Stellventil Typ 3595

Nennweite NPS ...

Nenndruck Class ...

Gehäusewerkstoff vgl. Tabelle 2

Anschlussart Flansche/Anschweißenden/

Vorschuhenden

Kennlinienform linear oder gleichprozentig

Durchflussmedium Dichte und Temperatur (ggf. weitere

Mediumsdaten)

Durchfluss im Norm- oder Betriebszustand für ver-

schiedene Betriebsfälle

Druck Vordruck  $p_1$  und Nachdruck  $p_2$  oder

Differenzdruck Δp jeweils bei minimalem, normalem und maximalem Durch-

fluss

Ventilgarnitur USS/STD™, USS/LDB™, BSS/STD™,

BSS/LDB<sup>TM</sup>, CAVLESS<sup>TM</sup>, PILOT/STD<sup>TM</sup>, PILOT/LDB<sup>TM</sup>, MULTICYL<sup>TM</sup> mit/ohne

Druckentlastung

Antrieb Pneumatischer Antrieb 3276 oder

Typ 3271

Anbaugeräte Stellungsregler, Grenzsignalgeber, Ma-

gnetventil oder andere (Einzelheiten

vgl. Übersichtsblatt ▶ T 8350)

Zugehörige Einbau- und Bedienungsanleitung

► EB 8079